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ABSTRACT

A set of direct numerical simulations of isotropic turbu-

lence passing through a nominally normal shock wave are

presented. Upstream of the shock, the microscale Reynolds

number is 40, the mean Mach number is 1.3–6.0, and the

turbulence Mach number is 0.22. It is shown that the Kol-

mogorov scale decreases during the shock-interaction, which

implies that the grid resolution needed to resolve the viscous

dissipation is finer than used in previous studies. This leads

to some qualitative differences with previous work, e.g. that

the streamwise vorticity variance increases rapidly behind

the shock.

MOTIVATION AND OBJECTIVES

Shock/turbulence interaction is a fundamental phe-

nomenon in fluid mechanics that occurs in a wide range of

interesting problems in various disciplines of science. Ex-

amples include supernovae explosions, inertial confinement

fusion, hypersonic flight and propulsion, and shock wave

lithotripsy (used to break up kidney stones). In many such

applications the shock/turbulence interaction includes addi-

tional complexities, e.g., real gas effects, multiple species,

non-uniform mean flow, or streamline curvature. The most

fundamental problem, where these additional complexities

have been removed, is arguably that of isotropic turbulence

passing through a nominally normal shock wave in a perfect

gas. Given the historical success in studying building-block

problems in fluid mechanics, canonical shock/turbulence in-

teraction is the focus of the present study.

Ribner (1954) studied the problem analytically by solv-

ing the linearized Euler equations with linearized shock jump

conditions for incoming purely vortical turbulence. This lin-

ear interaction analysis (LIA) relies on several assumptions,

most notably that the turbulence comprises a small pertur-

bation relative to the shock and that nonlinear effects in the

post-shock evolution are small (as well as the standard as-

sumption of a difference in time scales). Rapid distortion

theory (RDT) relies on the same assumptions, but addi-

tionally neglects both the post-shock linear evolution and

all effects of the turbulence on the shock. In addition, the

Rankine-Hugoniot shock jump conditions are incorporated

into LIA but not RDT; one consequence is that LIA captures

the generation of sound and entropy waves from incoming

purely vortical turbulence.

Lee et al. performed a set of landmark direct numerical

simulations (DNS) of canonical shock/turbulence interaction

in a sequence of papers (Lee et al., 1993, 1997). The first

of these papers considered shocks at Mach numbers up to

1.2 where the viscous structure of the shock was resolved;

these were therefore truly direct solutions of the Navier-

Stokes equations. In the second paper they verified that

these “true” DNS results at Mach 1.2 could be replicated

by instead capturing the shock (at considerably lower cost),

provided sufficient grid resolution in the shock-normal di-

rection at the shock. This methodology was then used to

compute cases at Mach numbers up to 3. When comparing

the results to LIA predictions, they found that LIA realisti-

cally represents many features, including the amplification of

transverse vorticity, the amplification and post-shock evolu-

tion of the Reynolds stresses, and the decrease in transverse

Taylor length scale.

Mahesh et al. (1997) considered the influence of entropy

fluctuations in the upstream turbulence, and found that neg-

atively correlated velocity and temperature fluctuations lead

to enhanced amplifications of turbulence kinetic energy and

vorticity. Later, Jamme et al. (2002) resolved the viscous

shock structure at Mach 1.2 and 1.5, and essentially con-

firmed the findings of Mahesh et al.. Barre et al. (1996)

studied the problem experimentally in a windtunnel, and

measured velocity variances using hot-wires and LDV.

The present study builds on these previous studies, es-

pecially those by Lee et al. (1993, 1997) (henceforth refered

to as Lee93 and Lee97, respectively). In this paper, DNS in

the extended sense of capturing the shock while directly re-

solving all scales of turbulence is used. It will be shown that

a simple argument about the Kolmogorov scale implies that

DNS requires a refined grid in both the shock-normal and

the transverse directions to fully resolve the viscous scales of

turbulence. This is verified by a grid convergence study, and

implies that the calculations in the studies mentioned above

were, most likely, under-resolved. The present DNS data is

fully resolved, which leads to larger differences between the

data and LIA. The Reynolds stresses are more anisotropic in

the present DNS, and there are qualitative differences in the

Taylor length scales. Moreover, the vorticity components

return to isotropy in all cases in the present study. This

raises the interesting question of whether under-resolution of

the post-shock turbulence in DNS essentially neglects some

phenomenon that is also neglected in the LIA. This will be

explored below.

Throughout this paper the subscripts “u” and “d” refer

to average states upstream and downstream of the shock,

respectively. For quantities that evolve in the stream-

wise direction, these states are obtained by extrapolation

to the average shock location. The mean flow and tur-
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bulent Mach numbers are defined as M = u1,u/cu and

Mt =
p

〈u′iu
′

i〉u/cu, respectively, where u1 is the velocity in

the streamwise (shock-normal) direction and c is the speed of

sound. All cases discussed here have Mt ≈ 0.22 immediately

upstream of the shock.

NUMERICAL METHOD

The compressible Navier-Stokes equations for a perfect

gas with ratio of specific heats γ = 1.4 are solved using a

solution-adaptive finite difference method (Larsson et al.,

2007). Near shocks, a fifth-order accurate weighted essen-

tially non-oscillatory (WENO) scheme is used to approx-

imate the inviscid fluxes, whereas a sixth-order accurate

central difference scheme on the split form by Ducros et al.

(2000) is used in the remainder of the domain. The sen-

sor s = −θ/(|θ| +
p

〈ωjωj〉yz) is used to identify regions

of shock waves at every time step, where θ = ∂juj is the

dilatation, ωi = εijk∂juk is the vorticity, and 〈·〉yz is an

average over the transverse directions to avoid spuriously

high sensor-values at grid points with small vorticity. The

WENO scheme is applied in regions of s > 0.5. Note that

the WENO scheme is applied in all directions, which was

found necessary for stable calculations at high values of Mt.

This solution-adaptivity leads to a method that captures the

shocks in a crisp and accurate fashion while introducing only

minimal amounts of numerical dissipation. This has been

shown to lead to a broad range of well-resolved scales (Lars-

son et al., 2007). The viscosity is assumed to follow the

power-law μ = μref (T/Tref )
3/4, and the Prandtl number is

taken as Pr = 0.7. The viscous terms are treated by a sixth-

order accurate central scheme, and the system is integrated

in time using a fourth-order accurate Runge-Kutta method.

The solution-adaptive method introduces internal interfaces

between the central and WENO schemes; these are treated

in a way similar to that devised by Pirozzoli (2002) to ensure

conservation of mass, momentum and total energy. The nu-

merical stability of these internal interfaces was analyzed by

Larsson & Gustafsson (2008), where it was shown that the

full (coupled) method is linearly stable. Thus any spurious

oscillations introduced by the solution-adaptive switching of

schemes are bounded. The code has been thoroughly verified

on several benchmark problems.

The computational domain is 4π × (2π)2 in the stream-

wise and transverse directions. The grid is stretched in the

streamwise direction such that the streamwise grid spacing

at and behind the shock is approximately 3 times finer than

the transverse spacing.

All computational studies necessarily involve various

sources of error, and it is essential to analyze and quan-

tify their impact. This is especially true for canonical

shock/turbulence interaction, which despite its geometrical

simplicity has some very subtle potential sources of error. In

the following subsections we consider those elements of the

problem that have the largest influence on the accuracy of

the results.

Inflow turbulence

It is important to ensure that the turbulence immedi-

ately upstream of the shock is realistic, fully developed and

well-characterized. In the present study the inflow turbu-

lence is generated in several steps to meet these criteria,

essentially following the technique proposed by Xiong et al.

(2004). First, several independent but statistically identical

fields of isotropic turbulence in periodic boxes are generated

using the methodology proposed by Ristorcelli & Blaisdell

(1997). These fields have exponentially decaying veloc-

ity spectra E(k) ∼ k4 exp
`
−2k2/k2

0

´
, with peak energy

at wavenumber k0 = 4 and microscale Reynolds number

Reλ = ρλ
p

〈u′iu
′

i〉/3/μ = 140, where λ is the Taylor length

scale. They are then allowed to decay temporally (i.e., in

periodic boxes) for approximately three eddy turnover times

λ/
p

〈u′iu
′

i〉/3, which ensures that the turbulence is fully de-

veloped and realistic. These independent realizations are

blended together into a longer inflow database, which is then

used together with Taylor’s hypothesis to specify the time-

dependent inflow turbulence. This technique leads to very

accurate spatially decaying turbulence immediately behind

the inlet (Xiong et al., 2004; Larsson, 2009). After the decay,

the Reynolds number immediately upstream of the shock

is Reλ ≈ 40. The thermodynamic quantities are approxi-

mately but not perfectly isentropic: immediately upstream

of the shock the rms-values are ρ′rms,u/(ρuM
2
t ) = 0.42±0.02,

p′rms,u/(γpuM
2
t ) = 0.37±0.02, and T ′

rms,u/((γ−1)TuM2
t ) =

0.35 ± 0.03.

Outflow boundary condition

The flow behind the shock is subsonic, and thus care

must be taken not to generate acoustic reflections from the

outflow boundary condition. This is accomplished through

a sponge region that damps the solution toward a quiescent

state before reaching the boundary. Terms of the form

−σ

„
x1 − x1,sp

x1,max − x1,sp

«2

(f − 〈f〉yz)

are added to the Navier-Stokes equations, where σ is a con-

stant, x1,sp is the beginning of the sponge region, x1,max

is the end of the domain, f = ρ, ρui, ρe0 denotes each

conserved variable, and 〈·〉yz denotes an average in the trans-

verse directions. We note that this form of the sponge terms

does not require knowledge of the average state at the outlet.

The length of the sponge region is x1,max − x1,sp = π.

The issue of avoiding acoustic reflections from an outflow

is common in the literature; however, the more interesting

issue is instead that of specifying the mean back pressure

p∞ (applied at the outflow boundary) such that the shock

is stationary in the mean. Consider first a shock in a laminar

flow with conditions u1,u and pu upstream of the shock, pd
downstream of the shock, and p∞ at the outlet boundary.

Assume that the shock is moving toward the outlet at a

speed 〈Us〉. The Rankine-Hugoniot relation for the pressure

jump then becomes

pd

pu
= 1 +

2γ

γ + 1

"
(u1,u − 〈Us〉)

2

c2u
− 1

#

, (1)

and p∞ = pd. For this laminar case it is straightforward

to specify the back pressure p∞ such that the shock is sta-

tionary. In a turbulent flow, however, the Rankine-Hugoniot

relation (1) is only valid instantaneously and not on aver-

age. Lele (1992) used RDT to develop approximate shock

relations for turbulent flow, and found that the density and

pressure jumps decrease in the presence of turbulence for a

given shock Mach number. Furthermore, the viscous decay

of turbulence kinetic energy behind the shock causes a spa-

tially increasing internal energy, and hence p∞ 	= pd. Given

these complications, it is clearly difficult to specify a priori

the back pressure that yields a stationary shock.

In the present study we therefore proceed by first com-

puting each case on a coarse grid with back pressure
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p∞,initial given by the laminar Rankine-Hugoniot conditions,

and computing the resulting average shock-speed 〈Us〉initial.

Differentiation of (1) with respect to pd and 〈Us〉 gives a

relation between small changes Δpd and Δ〈Us〉. Further

assuming that Δp∞ ≈ Δpd (i.e., that the viscous decay of

kinetic energy is unaffected by changes in the shock-speed)

gives the relation

Δp∞ ≈
−4ρuu1,u

γ + 1
Δ〈Us〉 . (2)

After finding the initial shock-speed 〈Us〉initial, this relation

is used to adjust the back pressure as p∞ = p∞,initial +

Δp∞ ≈ p∞,initial + (4ρuu1,u/(γ + 1)) 〈Us〉initial.

In practice the initial shock-speed is close to zero at low

turbulence intensities, but can be almost 1% of the upstream

velocity at the highest turbulence intensities considered here.

With the adjustment to p∞ given by Eq. (2), the resulting

average shock-speed is |〈Us〉|/u1,u < 0.0002 for all cases in

the present study.

Grid sensitivity

Direct numerical simulation of turbulence requires that

the viscous dissipation is fully resolved. Denoting the

maximum resolved wavenumber as kmax, this typically re-

quires (Pope, 2000) kmaxη � 1.5, where η =
`
ν3/(ε/ρ)

´1/4

is the Kolmogorov length scale (using the incompressible

definition) and ν and ε are the kinematic viscosity and rate

of dissipation of kinetic energy, respectively. This estimate

is applicable to isotropic turbulence, or possibly turbulence

that is only locally isotropic (i.e., isotropic at the small-

est scales). The turbulence in canonical shock/turbulence

interaction is isotropic upstream of the shock, and axisym-

metric and out of equilibrium immediately downstream of

the shock. It is not clear a priori whether the turbulence

returns to isotropy. The present DNS data shows that

the vorticity components become isotropic at k0x1 ≈ 10,

whereas the Reynolds stresses stay anisotropic (axisymmet-

ric) throughout the domain (discussed below; shown in

Figs. 4(c) and 6(b)). Given that vorticity is primarily as-

sociated with small-scale motions, one could argue that the

concept of the Kolmogorov scale and its relation to the grid

resolution makes sense upstream of the shock (x1 < 0) and

for k0x1 � 10. A first assessment of the necessary grid res-

olution is done by considering the requirement kmaxη � 1.5

in these regions.

Consider the approximate scaling of the Kolmogorov

length scale

η =

„
ν3

ε/ρ

«1/4

∼

„
μ2

ρ2ω2

«1/4

∼
T 3/8

ρ1/2 ω1/2
,

where the relations ε ≈ μω2, ν = μ/ρ, and μ ∼ T 3/4 have

been used. The streamwise and transverse vorticity compo-

nents change differently at the shock. Taking the (larger)

transverse components, and assuming that these change as

the density jump (the RDT result), gives ω2,d/ωu ∼ ρd/ρu.

This yields the change at the shock as

ηd

ηu
≈

„
Td

Tu

«3/8 „ρd
ρu

«
−1

, (3)

where the jumps in temperature and density can be in-

serted from the Rankine-Hugoniot relations. This is shown

in Fig. 1, where it is clear that the Kolmogorov scale de-

creases across the shock. Also shown in the figure are the

results from the present DNS; despite the somewhat crude

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

M

η
d
/
η
u

Figure 1: Change in the Kolmogorov scale across the shock

as a function of Mach number. Estimate from Eq. (3) in

lines with γ = 1.4 (solid) and γ = 5/3 (dashed). Results

from DNS in symbols.

estimate, the DNS agrees with the prediction with surpris-

ing accuracy. Specifically, the DNS data both confirm the

quantitative decrease in the Kolmogorov scale, and the qual-

itative effect of increasing ηd/ηu for M � 3. The latter is

due to the saturation of the density jump; the temperature

dependence (Td/Tu)3/8 is essentially linear.

This estimated change in the Kolmogorov scale is not un-

expected given the compressive nature of a shock, but, more

importantly (at this stage), it has an effect on the necessary

grid resolution. The present study uses grids that are re-

fined in the streamwise direction, implying that the critical

resolution is in the transverse directions. Therefore resolu-

tion of the post-shock viscous dissipation requires 2.5 times

as many grid points as resolving the pre-shock dissipation –

in every direction.

Now, this estimate is both approximate and only valid

for k0x1 � 10. In the region immediately behind the shock

(0 ≤ k0x1 � 10) the turbulence is out of equilibrium, and

the length scale of viscous dissipation is not well defined.

A simple argument (the RDT result) is that the turbu-

lence is compressed only in the streamwise direction behind

the shock, which suggests that streamwise grid refinement

is sufficient there. This is the reason for using grids with

approximately 3 times finer grid spacing in the streamwise

direction both at the shock and behind it.

The true test of whether the grid is sufficiently fine is a

systematic grid refinement. Fig. 2 shows a sample result

from such a grid refinement study, in this case the vor-

ticity variances for a case with M = 1.9 on successively

refined grids. We note that vorticity is a sensitive quantity

(given its dependence on small scales), and that other quan-

tities converge more quickly. The figure shows that there is

convergence. A close inspection reveals that the maximum

difference between the two finest grids is 2%, which serves

as an error estimate for the vorticity variances; quantities

that depend more on the large-scale motions have lower er-

rors. Also note that the vorticity components fail to return

to isotropy on the coarsest grids, where the post-shock tur-

bulence is under-resolved.

In conclusion, the results are statistically converged to

within 2% on the finest grid with 1040 × 3842 ≈ 153 · 106

grid points. The fact that such a fine grid is needed even

for a relatively low Reλ ≈ 40 is due to the change in the

Kolmogorov scale at the shock. It will be shown below that

the Taylor length scales and vorticity variances behave dif-
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Figure 2: Convergence of streamwise (solid) and transverse

(dashed) vorticity variances under grid refinement for Mach

1.9. Grids with 174×642, 261×962, 347×1282, 521×1922,

694 × 2562, and 1040 × 3842 points, where finer grids yield

higher variances.

ferently in the present data compared to that of Lee97; this

difference is most likely due to the better resolution of the

post-shock turbulence.

AVERAGE RESULTS

Once the initial transients have disappeared, averages

are collected over the transverse directions and a period of

time k0 u1,u tstats ≈ 100. The computed averages change

little when decreasing the averaging period by half, thus

confirming that the averages are converged.

There are many possible ways to non-dimensionalize the

streamwise coordinate, both by turbulence length scales and

convected turbulence time scales (e.g., collapsing the decay).

Here we choose to scale the streamwise coordinate by the

wavenumber of peak energy k0 in order to facilitate com-

parison with linear analysis. In all figures the streamwise

coordinate has been shifted such that the average position

of the shock is at x1 = 0. With this shift, the inflow is at

k0x1 ≈ −8, the outflow is at k0x1 ≈ 42 and the sponge

region begins at k0x1 ≈ 30. The transverse domain size is

k0L2,3 = 8π.

Mean profiles

The mean profiles of density are shown in Fig. 3 for a

selection of Mach numbers. The jumps at the shock are

consistently smaller than the laminar Rankine-Hugoniot re-

lations, and the relative deviations from the laminar jumps

increase for lower Mach numbers. This is to be expected,

since the turbulent Mt is held constant; thus the turbu-

lence intensity is higher at lower M . The profiles of density

(and pressure, though not shown) show the same qualitative

structure: first the jump at the shock, then a small decrease,

and finally a slow increase toward the outflow. The slow

increase toward the outflow is sensitive to the exact imple-

mentation of the downstream boundary condition. In the

present study, non-reflecting boundary conditions based on

a linearization around the laminar post-shock state are used,

which may explain why all profiles approach the laminar

state downstream. Therefore, the downstream development

of the mean quantities should not be taken as the truth.

Disregarding the downstream development, all profiles still

show an overshoot immediately behind the shock. Thus, on

average, there is a compression at the shock followed by a

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

k0x1

(〈
ρ
〉
−
ρ
u
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(ρ
d

,l
a
m

−
ρ
u
)

Figure 3: Mean density, scaled with laminar post-shock den-

sity ρd,lam. Mean Mach numbers 6.0 (solid), 2.5 (dashed),

and 1.5 (dash-dotted).

slight expansion.

The deviation from the laminar shock jumps was ana-

lyzed by Lele (1992), who derived the turbulent jump con-

ditions and used RDT to approximately close them. Lele’s

theory is qualitatively consistent with the present results in

that turbulence leads to decreased jumps in mean density

and pressure.

Velocity variances

The velocity variances are shown in Fig. 4 for the same

selection of cases. The transverse Reynolds stress 〈u′
2
u′
2
〉

increases at the shock followed by monotonic decay. The

streamwise stress 〈u′
1
u′
1
〉 has a large peak at the mean shock

location due to the unsteady shock motion, and then evolves

non-monotonically. This evolution is captured in linear anal-

ysis, and is due to a transfer of energy from acoustical to

vortical modes behind the shock (cf. Lee97).

The anisotropy of the Reynolds stresses 〈u′
1
u′
1
〉/〈u′

2
u′
2
〉

is shown in Fig. 4(c), where it is clear that the shock-

interaction causes the turbulence to become anisotropic.

The post-shock anisotropy as quantified by 〈u′1u
′

1〉/〈u
′

2u
′

2〉

is between 1.2 to 1.4 depending on Mach number. There

is no real evidence of a return-to-isotropy in the numerical

results, implying that this process, if present, is signifi-

cantly slower than the viscous decay. Comparison to the

results by Lee97 shows a somewhat faster adjustment be-

hind the shock, which is either due to the fully developed

upstream turbulence in the present study having more fine-

scale features (with shorter length/time scales) or an effect

of insufficient post-shock resolution in their results.

The amplification of the far-field Reynolds stresses versus

M is shown in Fig. 5, where it is compared to the prediction

of linear interaction analysis (LIA, taken from Lee97), the

results of Lee97, and the experiments by Barre et al. (1996).

The present DNS data agree very well with LIA for the trace

〈u′ju
′

j〉, but yield much larger anisotropy for all Mach num-

bers. Specifically, 〈u′1u
′

1〉 > 〈u′2u
′

2〉 for all present cases.

This agrees qualitatively with the experiment by Barre et

al., but contradicts both LIA and the results of Lee97 (both

of which predict higher transverse stress for M � 2). The

logical interpretation is that nonlinear effects must be im-

portant in the post-shock evolution; these are excluded from

LIA and underpredicted when failing to fully resolve the

post-shock turbulence.

Vorticity variances
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Figure 4: Velocity variances. Mean Mach numbers 6.0 (solid), 2.5 (dashed), and 1.5 (dash-dotted).
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(a) Streamwise (solid line, filled symbols) and trans-

verse (dashed line, open symbols) Reynolds stresses.
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(b) Trace of Reynolds stress.

Figure 5: Amplification of Reynolds stresses from present

DNS (circles), computations by Lee97 (squares), experi-

ment by Barre et al. (diamonds), and LIA taken from Lee97

(lines). The results have been extrapolated from the far-field

to the mean shock-location.

The vorticity variances are shown in Fig. 6 for a few

cases. The transverse vorticity is amplified directly at the

shock, and then decays. The streamwise vorticity is initially

unaffected by the shock, but then quickly increases until

it equilibrates with the transverse components. Fig. 6(b)

shows that there is a clear return to (local) isotropy for the

vorticity components at k0x1 ≈ 10. This is in contrast to

earlier work by Lee97, where the transverse vorticity was

still 50% larger than the streamwise at k0x1 ≈ 12 (the end

of their domain). Again, the most plausible explanation is

the grid resolution. It was shown in Fig. 2 that the vorticity

components fail to return to isotropy when the post-shock

turbulence is under-resolved. Since the post-shock vorticity
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(a) Transverse (upper curves) and streamwise (lower

curves) variances.
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〈ω

1
ω

1
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(b) Anisotropy.

Figure 6: Vorticity variances. Mean Mach numbers 6.0

(solid), 2.5 (dashed), and 1.5 (dash-dotted).

evolution is a nonlinear process, where transverse vorticity

is tilted into the streamwise direction, one can hypothesize

that insufficient grid resolution inhibits this process.

Kolmogorov length scale

The evolution of the Kolmogorov length scale η is shown

in Fig. 7. Given that the turbulence is out of equilibrium

(and locally anisotropic) for k0x1 � 10, it is not clear how

one should interpret η (computed from the isotropic defini-

tion) in this region. Nevertheless, the decrease at the shock

is clear, as is the weakening of this effect for the highest

Mach numbers. To compensate for the viscous growth, the

post-shock Kolmogorov scale is computed by extrapolation

to the mean shock position; these are the values shown in

Fig. 1.
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Figure 7: Kolmogorov length scale. Mean Mach numbers

6.0 (solid), 2.5 (dashed), and 1.5 (dash-dotted).

SUMMARY AND CONCLUSIONS

A set of direct numerical simulations (DNS) of canonical

shock/turbulence interaction is presented. Care is taken to

ensure fully developed isotropic turbulence upstream of the

shock, and a systematic grid refinement study shows that the

results are converged on the finest grid. The post-shock vis-

cous dissipation is fully resolved, with kmaxη ≥ 1.7 after the

return to local isotropy in all cases. Thus the DNS databases

are ideally suited for exploration of the fundamental physics

and dynamics of shock/turbulence interaction.

It is argued that previous DNS studies of this problem

may have been under-resolved in the post-shock region, since

the Kolmogorov scale decreases during the interaction. A

simple estimate of this change is given; it agrees with the

DNS data to within 10%.

The present results show some qualitative differences

with previous computations by Lee et al. (1993, 1997) and

Jamme et al. (2002) and the linear interaction analysis (LIA)

of Ribner (1954): the streamwise vorticity grows quickly and

equilibrates with the transverse one; the Reynolds stresses

are much more anisotropic; and this anisotropy persists at

high Mach numbers (LIA predicts a reversal, which con-

firmed). The most plausible explanation for these differences

is that nonlinear processes behind the shock are important,

and that these processes were under-predicted in past com-

putations (and obviously absent from the linear theory).
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