LARGE EDDY SIMULATION OF FREE-STREAM TURBULENCE EFFECTS ON HEAT TRANSFER TO A HIGH PRESSURE TURBINE CASCADE

Rathakrishnan Bhaskaran
Department of Mechanical Engineering, Stanford University
Stanford, CA, 94305, USA
rbhas@stanford.edu

Sanjiva K. Lele
Department of Mechanical Engineering and Aeronautics and Astronautics, Stanford University
Stanford, CA, 94305, USA
lele@stanford.edu

ABSTRACT

Large Eddy Simulation (LES) of an uncooled, transonic, linear HP turbine vane cascade has been pursued using a high-order numerical method with about 83 million grid points. Heat transfer and aerodynamics of the blade is investigated in the presence of free-stream turbulence (FST). Quantitative comparisons with the experiments of Arts et al. (1990) show satisfactory agreement. The distortion of vortices from the inflow turbulence in the cascade passage leads to formation of long streamwise streaky structures, leading to transition of suction side boundary layer. Significant heat transfer augmentation is seen on both the pressure and suction sides due to the presence of these structures. Transition to turbulence, possibly due to streak instability and adverse pressure gradient effects is observed in the last 10% of the blade suction surface.

INTRODUCTION AND OBJECTIVES

The current trend in gas turbine engine design is to achieve better efficiency through higher turbine inlet temperature. As a result, the nozzle guide vanes and rotor blades of a high pressure (HP) turbine cascade are subject to an increasingly hostile thermal environment. High levels of turbulence and hot streaks from the upstream combustor impinge on the HP turbine blade rows. New, improved blade materials, and efficient cooling technology have sustained this rise in turbine inlet temperature. Heat transfer prediction of the thermally critical regions of a HP turbine has been a vital element in the design of gas turbine engines.

The primary focus of the current work is to investigate, using high fidelity numerical simulations, the effect of free-stream turbulence on the blade boundary layer and heat transfer augmentation in a high pressure turbine guide vane cascade. More complex phenomenon, such as rotor-stator interaction, discrete hole film-cooling, blade surface roughness effects, etc. are not considered in the present study. An uncooled, transonic, linear guide vane cascade designed at the von Kármán Institute (VKI) for fluid dynamics at Belgium by Arts et. al. (1990) is used as the model geometry. Heat transfer measurements for a wide range of experimental conditions were made at VKI. Inlet turbulence levels of $Tu\% \sim 1 - 6$, exit Reynolds number based on chord in the range of $Re \sim 500,000 - 2,000,000$ and exit Mach number of $Ma \sim 0.9 - 1.1$ was used in a short duration blow down facility to measure heat transfer to the vane.

NUMERICAL METHOD AND COMPUTATIONAL GRID

A high-order overset compressible Large Eddy Simulation (LES) procedure is used to numerically simulate the flow in this HP vane cascade. The compressible Navier-Stokes equations in conservation form are solved in a general curvilinear coordinate frame using dual implicit-explicit time advancement scheme. The governing equations are:

$$\frac{\partial}{\partial t} (\rho u_i) + \nabla \cdot (\rho u_i u_j) = 0,$$ \hspace{1cm} (1)

$$\frac{\partial}{\partial t} (\rho u_i v_j) + \nabla \cdot (\rho u_i u_j u_j) = -\delta_{ij} \rho \frac{\partial p}{\partial x_i} + \tau_{ij},$$ \hspace{1cm} (2)

$$\frac{\partial}{\partial t} (\rho E_i) + \nabla \cdot (\rho u_i u_j E_j) = (\rho g_{ij} T_i)_j + (\tau_{ij} g_{jk} v_k)_j.$$ \hspace{1cm} (3)

where v_i, ρ, p, and T are the contravariant velocity components, density, pressure, and temperature respectively. The total energy E, and the viscous stress tensor τ_{ij} are given by

$$E = \frac{p}{\gamma - 1} + \frac{1}{2} \rho g_{ij} v^i v^j,$$ \hspace{1cm} (4)

$$\tau_{ij} = \rho (g_{gh} v^i_k v^j_k + g^i_k v^j_k - \frac{2}{3} g_{ij} v^k_k).$$ \hspace{1cm} (5)

g_{ij} and g^{ij} are the covariant and contravariant metric tensors respectively. The subscript $(,)j$ denotes covariant derivative. In writing the above equations, the Einstein summation convention is used (an index repeated once in the subscript and superscript of any term is summed over).

The physical velocity components are non-dimensionalized by the free-stream speed of sound c_{ss}, the density by the free-stream density ρ_{ss}, the pressure by $\gamma \rho_{ss} c_{ss}^2$ and the temperature by $(\gamma - 1) T_{ss}$. This set of equations is closed by the equation of state

$$p = \frac{\gamma - 1}{\gamma} \rho T.$$ \hspace{1cm} (6)

The equations for the LES are obtained by applying a low pass filter on the above set of governing equations. The resulting subgrid scale fluxes are closed by using a dynamic
A sixth-order compact scheme for spatial discretization with a staggered arrangement of variables is used. A mixed second order implicit scheme with approximate factorization and a third order explicit Runge-Kutta scheme is used for time advancement. See Nagarajan et al. (2003) for the details.

A fourth order Hermite interpolation scheme (Delfs 2001) is used for exchange of information between the grid blocks. In two dimensions, the Hermite interpolation at an overlap point is constructed using the function values and the first derivatives at the four surrounding points which bound the interpolated point in the uniform computational space. A local grid system \((\xi,\eta)\) is constructed in the computational space, with the origin of the coordinate system at the center of the box formed by the points bounding the interpolated point. The coordinates of the interpolated point in this local coordinate system are found by the inverse mapping \(M^{-1}(x,y)\). The forward mapping \(M(\xi,\eta)\) is defined at all points using the Hermite interpolation scheme, and the inverse mapping \(M^{-1}(x,y)\) is found using a Newton-Raphson procedure. The interpolation formula is given by

\[
f(\xi,\eta) = \sum_{l,k=0}^{1} C_{lk}^0(\xi,\eta) f_{i+l,j+k} + C_{lk}^1(\xi,\eta) \left[\frac{\partial f}{\partial \xi}
ight]_{i+l,j+k} + C_{lk}^2(\xi,\eta) \left[\frac{\partial f}{\partial \eta} \right]_{i+l,j+k} + O(\Delta^4) \tag{7}
\]

where \(C_{lk}^0, C_{lk}^1,\) and \(C_{lk}^2\) are the coefficients of interpolation. The details of the implementation can be found in Delfs (2001).

The primary geometrical properties of the blade are: chord of 67.647 mm, pitch to chord ratio of 0.85, stagger angle of 55 degrees (measured from the axial direction) and leading edge diameter to chord ratio of 0.122. A spanwise box of size 0.17 was used for the computation. A body-fitted O-grid block of size 1600 \(\times\) 201 \(\times\) 160 which is advanced in time using an implicit scheme is used around the blade to resolve the boundary layer. This O-grid block is embedded in a background H-grid block of size 960 \(\times\) 408 \(\times\) 80, which is advanced in time using an explicit time advancement scheme and is used to provide good resolution for the incoming turbulence. A schematic of the grid used in the simulation and the boundary conditions are shown in Figure 1.
Ma is

Figure 3: Isentropic Mach number distribution on the surface of the blade. Symbols are from Arts (1990) experimental data set MUR45, and the line is the present LES matching conditions of MUR226. Various sections of the curve and their corresponding stations on the blade surface are marked.

Figure 4: Nusselt number distribution on the surface of the blade. Symbols are from Arts (1990) experimental data set MUR226, and the line is the present LES simulation matching flow conditions of MUR226.

in the figure. The good agreement between the simulation and experiment shows that the LES has captured the overall blade pressure distribution well.

The flow sees a favorable pressure gradient on all of the pressure side. The pressure gradient is gradual between A-B and then becomes large in B-C. The flow sees a favorable pressure gradient through most of the suction side also; the flow accelerates from A-E followed by a slight adverse pressure gradient zone between E-F. These structures in the boundary layer in these different zones are quite different, and will be described in a later section.

Time and spanwise average heat transfer distribution is shown in the blade Nusselt number plot in Figure 4. The overall shape of the blade heat transfer profile is quite well captured by the LES, but the heat transfer coefficient is slightly underpredicted. Also the boundary layer seems to be transition later on the suction side as compared with the experiments. A possible explantion of this behavior could be the mismatch in the length scale of the turbulence that was specified at the inflow plane in the LES. It has been shown using simulations with organized spanwise disturbances by Xiong & Lele (2004) that leading edge heat transfer coefficient is quite sensitive not only to the amplitude of the turbulence, but also to its length scale. A larger length scale turbulence was found to produce lesser heat transfer augmentation, while a higher intensity turbulence was observed to cause greater heat transfer augmentation. A major limitation of Arts et. al.’s experimental data set is the characterization of the inflow turbulence. Turbulence intensity at only one station (at the inflow plane) is reported. They do not report the length scale or dissipation rate of the turbulence, or the intensity at any other station. Pecnik and Sanz (2007) have performed RANS simulations of this blade configuration and have reported (through private communication) that heat transfer and location of transition was sensitive to the turbulence dissipation rate at the inflow plane in their RANS model. Simulations with organized spanwise inflow disturbance similar to Xiong & Lele (2004) are being performed for this blade configuration in order to access the importance of the disturbance length scale on heat transfer.

The time averaged streamwise (s) component of velocity and mean temperature are shown in Figures 5 – 6 at stations A, B, D and E. scale turbulence was found to produce lesser heat transfer augmentation, while a higher intensity turbulence was observed to cause greater heat transfer augmentation. A major limitation of Arts et. al.’s experimental data set is the characterization of the inflow turbulence. Turbulence intensity at only one station (at the inflow plane) is reported. They do not report the length scale or dissipation rate of the turbulence, or the intensity at any other station. Pecnik and Sanz (2007) have performed RANS simulations of this blade configuration and have reported (through private communication) that heat transfer and location of transition was sensitive to the turbulence dissipation rate at the inflow plane in their RANS model. Simulations with organized spanwise inflow disturbance similar to Xiong & Lele (2004) are being performed for this blade configuration in order to access the importance of the disturbance length scale on heat transfer.

The time averaged streamwise (s) component of velocity and mean temperature are shown in Figures 5 – 6 at stations A, B, D and E. The near wall grid resolution requirements are similar to that of a DNS in order to capture the boundary layer instability process leading to transition and accurate prediction of heat transfer. Only the suction side boundary layer shows transition at this Reynolds number. The near wall grid spacing
Figure 7: Iso-surfaces of λ_2 show intense stretching of vortices from the inflow turbulence around the leading edge.

Figure 8: z-vorticity on the suction side showing breakdown of streaks into turbulence.

Figure 9: Fluctuation velocity vectors on the suction side boundary layer show meandering low and high velocity fluid streaks.

based on the local wall shear velocity in the transition zone E-F on the suction side in the streamwise (s), wall-normal (n) and spanwise (z) directions were about 30, 1 and 20 respectively. The boundary layer remains laminar over most of the suction side from A to E and all of the pressure side, where the long streaky structures in the boundary layer need to be sufficiently resolved.

Structures in the boundary layer

Eddies from the inflow turbulence are stretched around the leading edge (Figure 7), leading to significant enhancement of local streamwise (s) vorticity near the leading edge. The penetration of these vortices in the thermal boundary layer near the leading edge cause significant enhancement in heat transfer (Xiong et. al., 2007).

These streamwise oriented vortices wrap around the leading edge and are transported into the favorable pressure gradient zone (D-E) on the suction side boundary layer forming long streamwise streaky structures (Figure 8). The spanwise scale of these structures is much smaller than the streamwise scale. These structures appear to grow downstream both in amplitude and dimension, leading to formation of turbulent patches in the adverse pressure gradient zone (E-F). Figure 9 shows fluctuation velocity vectors (time and spanwise mean velocity subtracted) inside the suction side boundary layer. Regions of positive and negative fluctuation velocity vectors help visualize the meandering of regions of low and high speed fluid in these long streaky structures. A zoomed in view of the region E-F in Figure 10 show a large high speed streak in the middle of the domain, which slows down in the adverse pressure gradient zone E-F to form a large low speed zone near the trailing edge region. Visualization using iso-surfaces of λ_2 (the second largest eigenvalue of $S^2 + \Omega^2$, Jeong & Hussain, 1995) show the presence of a large streamwise oriented vortex in zone E-F (Figure 11) at this instant. The boundary layer remains laminar in the vicinity of this vortex. There seems to be a good correlation between the location of the streaks and the presence of turbulent spots, indicating a streak instability mechanism could be active.

The streaks break down to form A shaped turbulent spots (Figure 12), probably under the influence of multiple insta-
Figure 12: A shaped turbulent spots are seen on the suction side boundary layer in zone E-F in these contours of density.

Figure 13: x-vorticity on the pressure side show long streamwise streaks. The structures in the mildly favorable pressure gradient zone A-B is very different from the strongly favorable pressure gradient zone B-C.

Figure 14: Fluctuation velocity vectors on the pressure side boundary layer show Görtler type alternating regions of low and high speed streaks.

Figure 15: Fluctuation velocity vectors in a plane normal to the pressure side near point B.

Figure 16: Temperature fluctuation contours at the same location as Figure 15 show that the thermal boundary layer is perturbed due to the streaky structures.

These streaky structures perturb the turbulent boundary layer, causing enhancement in heat transfer. Fluctuation velocity vectors in Figure 15 and fluctuation temperature contours in Figure 16 show that the streaky structures lead to formation of unsteady mushroom like thermal structures in the boundary layer, similar to that seen by Xiong & Lele (2007). The streamwise oriented vortices transport hot fluid away and towards the wall according to the direction of the local fluid velocity in the vortex being away or towards the wall, thus creating regions of low and high heat transfer respectively.

CONCLUSIONS

The effect of inflow free-stream turbulence on the heat transfer and boundary layer stability on a high pressure turbine vane has been studied using a high-fidelity numerical simulation procedure. Good comparison with the experiments of Arts et. al. (1990) of blade isentropic Mach number distribution and heat transfer has been observed. Preliminary numerical visualization of the boundary layer flow has shown presence of long streamwise streaky structures on both the suction and pressure sides of the blade. Multiple instability mechanisms appear to be operational, leading to transition of the suction side boundary layer. Further simulations with varying amplitude and length scale inflow turbulence will help in better understanding the blade heat transfer augmentation and boundary layer instability mechanisms.

ACKNOWLEDGMENTS

R. Bhaskaran would like to thank Dr. S. Nagarajan for his technical assistance during the development of the under set LES solver based on a code he had originally developed. The authors would like to thank Dr. E. van der Weide for providing the code used for the RANS simulation to generate initial conditions for the LES. Helpful discussions with Dr. R. Pecnik on interpretation of results from his RANS...
simulations of the VKI HP vane cascade and with Prof. G. Iaccarino on mesh generation are gratefully acknowledged. The Air Force Office of Scientific Research (AFOSR) has provided partial sponsorship for this work. Computational resources provided by the Army Research Laboratory (ARL) is gratefully appreciated.

REFERENCES

