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ABSTRACT

The coupled effects of mean shear, density-stratification

and system rotation are investigated in the context of strong

turbulence, i.e. accounting for the baroclinic instability. Al-

though there exists a large literature in the rotating shear

case (e.g. [6]) and the stratified shear case, with linear ap-

proaches, Direct or Large Eddy Simulations, very few studies

consider the combined three distortions.

First, one has to define an admissible flow condition for

including all three effects, in order to be able to treat prop-

erly the homogeneity condition in the numerical simulations.

Then, we solve numerically the complete nonlinear equa-

tions for the rotating stratified shear homogeneous turbulent

flow, using a pseudo-spectral method. The most relevant

parameters for these Direct Numerical Simulations (DNS)

are chosen from a preliminary comprehensive parametric

study that includes two simplified approaches: (a) Rapid

Distortion Theory (RDT) with the related stability analysis

technique; (b) a simplified “pressureless” stability analysis.

BASE EQUATIONS

The base conservation equations are written for a heat-

conducting viscous fluid in the rotating frame of reference,

under the action of gravity. It is important to make two

remarks.

First, as in many geophysical applications, the centrifu-

gal force is incorporated in an extended gravitational field

g, in such a way that

g = −∇Φg − Ω × (Ω × x) = −∇(Φg −
1

2
|Ω × x|2)

where Φg is the natural gravitation field potential.

Second, the Boussinesq approximation yields the varia-

tion of fluid density due to a small variation of fluid temper-

ature as

ρ = ρ0(1 − β(T − T0))

where ρ0 is the density of the fluid at the reference tem-

perature T0, and β is the expansion coefficient, under the

condition that ∣∣∣ρ − ρ0

ρ0

∣∣∣ = −β(T − T0) � 1.

The Boussinesq approximation provides the following

equations for the fluid velocity u and the buoyancy be3 =

−g(ρ − ρ0)/ρ0 = gβ(T − T0)e3:

∇ · u = 0

(∂t + u ·∇)u+ 2Ωe3 ×u = −∇
(

P

ρ0

+ gx3

)
+ be3 + ν∇2u

(∂t + u · ∇)b = χ∇2b

in the frame rotating vertically about e3 and for vertical

gravity g. Thermal diffusivity is χ and molecular viscosity

ν.

The baroclinic torque appears upon writing the vorticity

equation by taking the curl of the previous velocity equation:

(∂t + u · ∇)ω = ω · ∇u +
1

ρ2
∇ρ × ∇p + ν∇2ω

which, using the Boussinesq approximation, allows to write

the torque as:

1

ρ2
∇ρ×∇p �

1

ρ2
∇(ρ−ρ0)×(−ρ0ge3) = ∇×(−

g

ρ0

(ρ−ρ0)

= ∇× (be3).

In barotropic flows, both pressure and density gradients are

aligned, resulting in zero additional torque. In the baro-

clinic case, the misalignment of ∇ρ and ∇p produces the

baroclinic torque which is responsible for baroclinic insta-

bilities.

THE ADMISSIBLE PROBLEM

As a first point, we emphasize the necessity to define

a self-consistent, physically relevant, mathematical system

to represent homogeneous turbulence subjected to space-

uniform mean gradients. This leads to using admissibility

conditions—as coined by A.C.C. Craik in the context of

stability analysis):

The mean (or base) flow must be a solution of

the Euler (or Helmholtz) equations, in connection

with a fluctuating (or disturbance) flow expressed

in terms of Fourier modes advected by the mean

flow.
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Both in RDT- and DNS-related studies, the problem of

admissibility is often ignored, because the numerical tech-

nique can be used regardless of the validity of the mean

flow, thereby not detecting the appearance of a spurious

gyroscopic torque—when not artificially balanced by an

additional term. Based on this, existing studies include

turbulence with a mean shear flow, rotating about the

cross-gradient direction (e.g. [5]), with RDT applications

proposed in astrophysics for protoplanetary disks or stellar

convection. In the oscillating shear flow considered by Yu

& Girimaji, 2005, the spurious vorticity term induced by

the periodic oscillation of the shear is balanced by an arti-

ficial body force. Even if these studies include potentially

interesting elements, it is better to address mean flows that

are consistent with the homogeneity property of turbulence,

which are exact solutions thanks to physical effects rather

than numerical add-ons.

We consider the mean flow sketched in figure 1, con-

sisting of mean shear with rate S, vertical vorticity with

rotation rate f = 2Ω, and vertical stabilizing density strat-

ification characterized by the Brunt-Väisälä frequency N

(proportional to the square root of the mean vertical den-

sity gradient). Admissibility conditions are satisfied if the

Helmholtz equation for the streamwise component of abso-

lute vorticity W1 is

dW1

dt
− Sf = −

∂b

∂x2

. (1)

where b is the buoyancy, i.e. the density flux. In the absence

of an additional spanwise component of mean density—or

buoyancy—gradient, mean vorticity is therefore created in

the streamwise direction. Conversely, W1 production can be

balanced by the addition of the following density gradient:

∂b

∂x2

= Sf = −
Sf

N2︸︷︷︸
ε

∂b

∂x3

(2)

In other words, the tendency for the horizontal density gra-

dient ∂b/∂x2 to generate streamwise vorticity (eq. (1)) is ex-

actly balanced by twisting the background vorticity through

a gyroscopic torque (cross product of vertical vorticity and

shear-related spanwise vorticity, Sf term here.) This is often

called the geostrophic adjustment in the geophysical commu-

nity (e.g. Drazin & Reid 1981.)

In the presence of the admissible mean flow, parameter-

ized by S, f and N , the fluctuating velocity u′
i and buoyancy

b′ are governed by

u̇′
i+Sx3

∂u′
i

∂x1

+ Sδi1u3︸ ︷︷ ︸
Shear

+fεi3ju′
j+

1

ρ0

∂p′

∂xi
= b′δi3 ;

∂u′
i

∂xi
= 0

(3)

ḃ′ +

Shear︷ ︸︸ ︷
Sx3

∂b′

∂x1

= −N2

⎛⎝u′
3 −

HDG︷︸︸︷
εu′

2

⎞⎠ . (4)

using a classical Boussinesq approximation that permits the

coexistence of a fluctuating density field (proportional to

b′ here) and non-divergent velocity. The overdot holds for

a substantial derivative with nonlinear advection. (Vis-

cous/diffusive terms are omitted here for the sake of brevity.)

The new terms induced by shear are underlined: two direct

Figure 1: Sketch of the mean flow, including: (a) system

vorticity; (b) vertical stable stratification; (c) mean shear.

Tilting isopycnal surfaces can trigger the baroclinic instabil-

ity, if (a)-(b)-(c) are simultaneously present.

Figure 2: Neutral curves (growth rate ω0 = 0) for k1 = 0:

the exponentially unstable regions are delineated by the

concave side of the curves. Different values of the non di-

mensional parameter ε are used.

distortion terms (label shear) and horizontal density gradi-

ent (HDG) effects.

The equation (1) is a consequence of the basic flow ad-

missibility constraint: The slope ε = b,2/b,3 of the mean

isopycnal—constant density—surfaces is due to the coupling

between shear and rotation; obviously, ε = 0 without either

shear or the Coriolis force (see figure 1.) Considering non

zero ε is important, since it corresponds to the baroclinic

instability, which can be used for a major modelling issue in

meteorology: the large-scale instability of the westerly winds

in mid-latitudes.

MODELS AND SIMULATIONS

Equations (3) and (4) are solved with varying two in-

dependent parameters chosen among the Rossby number

Ro = S
f

, the Richardson number Ri = N2

S2
and the baro-

clinic coefficient ε = Sf
N2

. The study is three-fold, with

methods of increasing complexity: (1) a pressureless linear

approach, completely analytic, with application to Reynolds

Stress Models; (2) a RDT study, in which complex effects of
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fluctuating pressure are accounted for. The linear equations

are solved in spectral space. (3) DNS, i.e. including nonlin-

ear advection terms w.r.t. RDT equations, treated also in

spectral space (the technique first introduced by [4]).

Pressureless analysis

A preliminary but useful analysis can be obtained for the

baroclinic case when taking the linear inviscid limit of equa-

tions (3) and (4), and considering the velocity/buoyancy

fluctuations around the mean. The advantage of this ap-

proximation is that the pressure is discarded and does not

appear any more in the problem, whence the denomination

“pressureless”.

This approach can also be viewed as performing the

stability analysis of the system submitted to small pertur-

bations. It is used by [9], who get a linear system of first

order differential equations in u and b, with a simple ma-

trix of coupling coefficients involving only the Richardson

number Ri and the Rossby number Ro. In classical hy-

drodynamic stability, one computes the eigenvalues of the

system, and decides on potential instabilities depending on

their real part.

Here, instability is found for Ri < 1 since the following

eigenvalues become real with a positive one that gives the

growth rate:

σ = ±
(
−(Ri + Ro−2) +

√
(Ri − Ro−2)2 + 4Ro−2

)1/2

Some statistics may then be computed analytically. For

instance, the anisotropy tensor components bij , i.e. the

deviatoric part of the Reynolds stress tensor, may be ob-

tained. The horizontal and vertical diagonal components,

in the pressureless limit, and at large time, depend on the

Rossby and Richardson numbers as:

b̃11(t → ∞) = −1/3 + σ2
(
(Ro−2 + σ)(1 + Ro−2 + σ2)

)−1

(5)

and

b̃33(t → ∞) = −2/3 − σ2(1 + Ro−2 + σ2)−1 (6)

with b̃22 = −(b̃11 + b̃33). A plot of their dependence on the

Rossby number is discussed in the following (figure 6).

RDT solutions and Direct Numerical Simulations

RDT calculations are more easily performed by using

mean-flow-advected spatial variables, denoted X in physi-

cal space and K in Fourier space. Expanding the fluctuating

fields of equations (3) and (4) in terms of advected Fourier

modes, the divergence-free constraint is replaced by a geo-

metric one and the pressure is solved algebraically. Hence,

the initial five-component (u′
1
, u′

2
, u′

3
, p′, b′) problem is re-

placed by a three-component one, in which the velocity fluc-

tuations are represented by two independent solenoidal com-

ponents: the toroidal part u(1)(k, t), and the poloidal one

u(2)(k, t). For mathematical convenience, we note u(3)(k, t)

the buoyancy spectral amplitude, so that u(3)∗u(3) is the

spectral density of potential energy.

The RDT solution involves the Green’s function gij of

the linearized equations, which is deterministic, and is even-

tually used to compute statistical moments of fluctuating

variables (see [8] for details.)

Additionally, the Green’s function is also the main in-

gredient for performing the stability analysis. In short, the

linearized equations (3) and (4) amount to a system

u̇(i) + mij(k(t))u(j) = 0, i, j, = 1, 2, 3

with solution

u(i)(k(t), t) = gij(k, t, t0)u(j)(k(t0), t0)

and k(t0) = K.

For k1 = 0, which corresponds to infinitely elongated

physical structures in the streamwise direction, the invis-

cid RDT solution is obtained analytically in terms of a

k-dependent frequency ω0. These solutions exhibit an os-

cillating behavior (stable case) when ω2
0

> 0, an exponential

growth (unstable case) whenever ω2
0

< 0, and a linear (alge-

braic) growth if ω0 = 0. Neutral curves drawn in the (Ri,

θ = ̂(k, n)) plane for k1 = 0 for different values of ε are

displayed in figure 2. The plot shows the neutral curves in

the Ri,θ plane, in which θ corresponds to the orientation

of the wavevector of the most unstable mode. The inset

close-up shows small values of ε, which are more relevant for

geophysical applications.

Among the attempts at modelling baroclinic flows, the

analysis by Eady (1949) [10] considered only the geostrophic

mode at vanishing Rossby number Ro → 0. The computed

RDT solution at k1 �= 0 yields amplification rates which

are comparable to those found by Eady for small values of

the parameter ε. Further RDT computations for k1 �= 0

demonstrate that the instability is concentrated near k1 = 0.

The model by Stone [12] included the non geostrophic

part of the fluid motion, and a more complete model was

proposed by Molemaker et al. [11], to include both the

geostrophic and the ageostrophic modes at Burger number

B = Ro2Ri = 1. They show that at Ri < 1, the centrifugal

instability occurs both for symmetric and for non symmetric

perturbations.

Direct numerical simulations (DNS) of the system of

equations (3) and (4) are performed with a classical pseudo-

spectral method (see e.g. [1] for details). The fluctuating

fields are developed on a basis of Fourier modes in the three

spatial directions, and the equations for the spectral coeffi-

cients, derived from the equations in physical space, are writ-

ten in a Lagrangian framework attached to the deformable

k-space, due to shear. Periodic remeshing is required to

restore the skewed computational box to a cube, an oper-

ation that does not seem to induce significant energy loss.

Full de-aliasing is performed when treating the nonlinear

terms by direct and inverse Fourier-transforms. Finally, a

second-order accurate time-stepping is applied. The result-

ing velocity and temperature fields are then either plotted

in three-dimensional space to observe the structure of tur-

bulence, or used to compute a series of statistical quantities:

energies, Reynolds stress tensor components, anisotropy ten-

sor, integral length scales, etc.

RESULTS

The complete study allows us to compare the evolutions

of the energies obtained from the pressureless analysis, full

RDT, and from DNS. We show that the threefold coupling

between shear, rotation and stratification stretches the in-

stability region up to Ri = 1. Without system rotation,

the instability essentially concerns negative values of the

Richardson number, and is limited by rather small positive

values of Ri: Ri ∼ 0.1 is observed in results coming from

RDT, DNS, and LES. DNS simulations are carried out to

complete and confirm the RDT results.
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Figure 3: Evolution of the kinetic energy in the 1283 DNS for

several parametric cases, combining the values of ε = 0.001

and ε = 0.2 to Richardson numbers Ri = 0.5, 0.99, 2. The

two unstable cases correspond to ε = 0.2 and Ri = 0.99 and

Ri = 0.5.
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Figure 4: Time evolution of the kinetic energy computed by

RDT computations with viscosity and 1283 DNS at Reλ =

49: (a) ε = 0.2, Ri = 2; (b) ε = 0.2, Ri = 0.99.
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Figure 5: Compared time evolution of the vertical velocity

component u3 provided by RDT and 1283 DNS computa-

tions for the parametric case ε = 0.2, Ri = 0.99.

In figure 3, we have explored the ε,Ri parametric space,

in order to quantify the evolution of the kinetic energy com-

puted by DNS. The result is quite clear: while the cases at

Ri > 1 remain stable whatever the value of ε, the cases at

Ri < 1 exhibit a growth of the kinetic energy under the baro-

clinic instability only for significant enough ε = 0.2. When

looking at the neutral curves on figure 2, the unstable do-

main at small ε appears to be very limited, and is probably

not captured in the discretized space of the simulations. For

a not too small value of ε, the simulation reproduces cor-

rectly the exponential growth of the baroclinic instability.

The curves of figure 4 again show the evolution of the

kinetic energy from the isotropic initial conditions, this time

computed by both viscous RDT and DNS, for two paramet-

ric cases at ε = 0.2: Ri = 2 and Ri = 0.99. As expected, the

first case (figure 4a) exhibits a steady decay of the kinetic en-

ergy, and not much difference between the linear model and

the full nonlinear simulations at this moderate Reλ = 49

value.

In the case at Ri = 0.99 (figure 4b), the instability is

present and captured by both RDT and DNS, although the

growth rate is larger in the former model. This may be

explained by the presence of the nonlinear energy transfer

terms that start cascading a part of the energy produced by

the instability at different scales than the primary instability

mode, and therefore drain part of the energy out of this

mode.

In this last case, it is interesting to note that, although

the energy growth seems similar in both the linear model and

the DNS, the structuration of the field differs completely.

Obviously, the lack of nonlinear terms automatically pre-

vents the creation of skewness in the velocity field computed

by RDT. This is shown on the plot of figure 5 that shows

the time evolution of the vertical velocity component u3,

from the initial isotropic conditions at t = 0. The RDT

curve exhibits larger amplitudes oscillations than the DNS,

in which u3 grows strongly after a given time, corresponding

to the creation by the baroclinic instability of strong three-

dimensional coherent structures which do not appear in the

linear model.

The anisotropy of the Reynolds stress tensor can still

be partly predicted by a linear approach, either pressure-

less analysis (equations (5) and (6)), or the RDT model. It

then reflects some structuring effects, even if it may miss

the aforementioned three-dimensional coherent structures

shown in DNS snapshots. The dependence of the bijs on

the Rossby number can therefore be obtained, and shown
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Figure 6: Deviatoric part of the Reynolds stress tensor, i.e.

the anisotropy tensor components bij = uiuj/unun − δij/3,

showing a strong growth of the vertical diagonal component

b33. The horizontal axis bears the inverse of the Rossby

number Ro−1.

on figure 6. The agreement is very good between the pres-

sureless approximation and the RDT model, showing that

pressure does not play an explicit role in the growth of the

instability. The growth of b33 at increasing Ro also denotes

the increasing production of kinetic energy.

A typical structuration of the buoyancy field, obtained

by 2563 DNS, is shown in figure 7a, comparing the struc-

ture of our sheared rotating stratified velocity field to that of

the purely stratified case obtained by Riley and deBruynkop

(figure 7b): DNS forced by baroclinic instability exhibit hor-

izontal layering with Kelvin-Helmholtz-type structures, that

resembles that in a purely vertically stratified flow at suffi-

ciently high Reynolds number.

CONCLUSION

This study of baroclinic turbulence was performed using

approaches ranging from a very simple analytical pressure-

less analysis to full non linear DNS, with an intermediate

Rapid Distortion Model that can be assimilated to classical

hydrodynamic stability analysis.

We have shown that interesting information can be ob-

tained on the energetics of the baroclinic flow both by the

pressureless approach and by RDT, and trends obtained

on single point quantities such as Reynolds stress tensor

anisotropy. Limits of stability in terms of the parameters—

Richardson number Ri and baroclinic parameter ε—can be

obtained with the linearized model, and pave the way to

full DNS thanks to a comprehensive preliminary parametric

study.

We show however that the complete structuration of

baroclinic turbulence can only be observed in its three-

dimensional extent by Direct Numerical Simulations, pro-

vided the right parameters are chosen. Moreover, the struc-

turation of the layers is similar to that of stably stratified

turbulence, but for the tilting of the layers, that is of course

only present from the coupling of the three effects that pro-

duce the baroclinic torque: rotation, shear, density gradient.

The study will be pursued to assess the amount of inter-

mittency of baroclinic turbulence, and therefore will need to

reach higher values of the Reynolds number using parallel

computations.
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(a)

(b)

Figure 7: (a) isosurfaces of the buoyancy fluctuation in the

zonal spanwise-vertical plane, from DNS at ε = 0.2, Ri =

0.99, Reλ(t = 0) = 66. (b) High Reynolds number DNS

results of Riley & de Bryunkops, 2003, for stably stratified

turbulence without mean shear or mean horizontal density

gradient. The top panel shows part of a horizontal slice

through the vertical velocity; the bottom panel shows the

density on a vertical slice along the white dashed line.
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