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ABSTRACT

Flow around a circular cylinder having a porous surface

is studied numerically by means of direct numerical simu-

lation (DNS) and large eddy simulation (LES). The flow in

the porous media is represented by a spatially-averaged (i.e.,

macroscopic) model. The parameters of the most effective

porous media are found from a two-dimensional parametric

test at the Reynolds number, based on the free stream veloc-

ity and the diameter of cylinder, of Re = 1000. The lift force

fluctuation is notably reduced in the case of thicker porous

surface. The DNS of three-dimensional flow at Re = 1000

reveals that the porous surface works to stabilize the shear

layer. The LES at a very high Reynolds number (Re = 105)

shows that the vortex shedding is completely suppressed by

the porous media, which supports the experimental observa-

tion by Sueki et al. (2007). Simulations at different Reynolds

numbers show that the stabilization effect works better at

higher Reynolds numbers.

INTRODUCTION

Vortex shedding from a circular cylinder causes many en-

gineering problems, such as noise, large drag and oscillation

due to the lift force, which in the worst case yield break-

age of instruments. In order to resolve these problems, flow

control around a circular cylinder has been studied by many

researchers (Choi et al., 2008).

Recently, Sueki et al. (2007) investigated the effect of

porous media fitted around a cylinder aiming at noise reduc-

tion of pantograph and achieved considerable reduction of

noise. Its mechanism was explored by the same group using

the PIV measurement (Takaishi et al., 2007): they observed

apparent modification of the downstream wake. These re-

sults suggest that the porous media is an effective control

device for flow around a bluff body.

Toward the use of porous media in industral applications,

one should further accumulate the knowledge about its effect

on the flow, including the dependency to various design pa-

rameters and the detailed mechanism of flow modification.

Therefore, in the present study, we perform simulation of

flow around a circular cylinder having a porous surface by

means of direct numerical simulation (DNS) and large eddy

simulation (LES). First, we perform a parametric test for

two-dimensional (2D) flow at the Reynolds number, based

on the free stream velocity and the diameter of cylinder, of

Re = 1000, and the flow fields in some selected cases are

analyzed in detail. Subsequently, three-dimensional (3D)

simulation is performed at Re = 1000 in order to investigate

the 3D effect. Moreover, the simulation is performed for a

lower Reynolds number (Re = 100) and a higher Reynolds

number (Re = 105) in order to clarify the Reynolds number

dependency.

NUMERICAL DETAILS

We consider the flow around a circular cylinder having

a porous surface. Various simulation methods have been

proposed to treat the flow faced on porous surface:

1. direct method, in which the complex geometry of

porous media is treated directly (Martys and Chen,

1996);

2. method of boundary condition, which uses an artifi-

cial boundary condition mimicking the effect of porous

surface (Jiménez et al., 2001);

3. macroscopic flow model, which uses a volume-averaged

equation in the porous media (Bruneau and Mortazavi,

2004).

In this study, we adopt the last method to avoid numerical

complexity and to study the effect of porous media thickness.

The momentum equation for an isothermal, incompress-

ible flow including that in the porous media is given by (Hsu

and Cheng, 1990):

∂u⃗

∂t
+ ∇

(
u⃗ · u⃗

ϕ

)
= −∇p +

1

Re
∇2u⃗ + K⃗ , (1)

where

K⃗ = −
ϕ

ReDa
u⃗ −

1.75
√

150

1
√

Da

u⃗|u⃗|
√

ϕ
. (2)

Equation (1) is developed from the assumption that the

porous media is made of mono-dispersed sphere particles.

The permeability, k, is made dimensionless by using the

cylinder diameter D to be expressed by the Darcy number,

Da = k/D2. The permeability is related to the porosity, ϕ

and the particle diameter, dp, through

k =
ϕ3dp

a(1 − ϕ)2
. (3)

Figure 1: Flow configuration.
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Note that, since Eq. (1) reduces to the conventional Navier-

Stokes equation outside the porous media, the interface

between the porous media and flow outside can be solved

without any additional treatment. Throughout the present

study, the surrounding porous media are assumed to have

uniform thickness, permeability, and porosity. Two differ-

ent thicknesses are considered: 20% and 50% of whole radius

(i.e., d = 0.2R and d = 0.5R).

The simulation code is based on the DNS code in

the cylindrical coordinate system by Fukagata and Kasagi
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Figure 2: Normalized drag and rms lift coefficients, CD

and C′
L, computed under different values of Darcy number,

Da, and dimensionless particle diameter, dp (2D simulation,

Re = 1000): (a) CD for porous media thickness of d = 0.2R;

(b) C′
L for d = 0.2R; (c) CD for d = 0.5R; (d) C′

L for

d = 0.5R.

Table 1: Information of computational domain

Nr × N� × Nz Lr × Lz

DNS (Solid) 270 × 256 × 64 70D × πD

DNS (Porous d = 0.2R) 310 × 256 × 64 70D × πD

DNS (Porous d = 0.5R) 370 × 256 × 64 70D × πD

LES (Porous d = 0.5R) 200 × 256 × 16 30D × πD/4

(2002). The governing equation is spatially discretized by

the finite difference method: the energy conservative second-

order central difference scheme and the second order central

difference scheme are applied for the convection and diffusion

terms, respectively. The low-storage third order Runge-

Kutta/Crank-Nicolson (RK3/CN) scheme is used for the

time integration. The velocity and the pressure are cou-

pled by the delta form fractional step method. The pressure

Poisson equation is solved by using the Fast Fourier Trans-

form(FFT) in the azimuthal (θ) and axial (z) directions and

the tridiagonal matrix algorithm (TDMA) in the radial (r)

direction. A uniform velocity, U∞, is imposed at the in-

let boundary ( 1

4
π ≤ θ ≤ 3

4
π), and the convective velocity

condition is used at the outlet boundary (− 3

4
π ≤ θ ≤ 1

4
π).

Information on the number of cells and the computational

domain used is shown in Table 1.

RESULTS AND DISCUSSION
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Figure 3: Pressure distribution on the surface (2D simula-

tion, Re = 1000): (a) time averaged pressure, Cp; (b) rms

pressure fluctuations, C′
p.
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(a)

(b)

Figure 4: Distribution of vorticity, ω (2D simulation, Re =

1000): (a) solid; (b) d = 0.5R (dashed line denotes the sur-

face of porous media).

Parametric test

First of all, a parametric test is performed by 2D DNS

in order to find the most effective properties of surrounding

porous media, In particular, we focus on the effect of dimen-

sionless permeability, Da, and the particle diameter, dp. The

Reynolds number based on the freestream velocity and the

outer diamter of the cylinder including the porous part is set

at Re = 1000, in which vortex-shedding clearly occurs. In

total, 280 cases are simulated with 28 different values of Da

in the range of 1.0×10−4 ≤ Da ≤ 1.0×10−1 and 10 different

values of dp in the range of 2.0 × 10−2 ≤ dp ≤ 2.0 × 10−1.

The effect of Da and dp are evaluated by the time-

averaged drag coefficient, CD, and the root-mean-square

(rms) of lift force coefficient, C′
L, defined respectively as

CD =
Fx

1

2
ρU2

, C′
L =

√
(F ′

y)2

1

2
ρU2

, (4)

where Fx and Fy denote the force components in the stream-

wise and the perpendicular directions, respectively; the

overbar and the prime denote the temporal mean and the

fluctuation, respectively. The force subjected to cylinder

surrounded by porous media, F⃗ , is calculated by the follow-

ing equation obtained by integrating Eq. (1):

F⃗ =

∮
@Ω

pn⃗ds +

∮
@Ω

τ⃗ds +

∫
Ω

K⃗dv , (5)

where n⃗ is the unit vector normal to the porous surface, ∂Ω.

Figure 2 shows the results of parametric test. The drag

and rms lift coefficients, CD and C′
L, are normalized by the

values of the solid case, CD;solid and C′
L;solid. These fig-

ures show that both CD and C′
L are more sensitive to Da

than dp. In the case of d = 0.2R, CD is found to be always

greater than that of the solid case, while C′
L/C′

L;solid be-

comes smaller than unity. For d = 0.5R, the effect of C′
L is

more noticeable. Especially, in the case of Da = 1.0× 10−2,

dp = 2.0 × 10−2, and ϕ = 0.99, C′
L is reduced to 14% of

C′
L;solid.

(a)

(b)

Figure 5: Pressure distribution, Cp (2D simulation, Re =

1000): (a) solid; (b) d = 0.5R (dashed line denote surface of

porous media).

Profiles of 2D flow (Re = 1000)

In order to investigate detailed effects of porous surface

to the flow, we focus on the case where the largest reduction

of C′
L was obtained, i.e., Da = 1.0× 10−2, dp = 2.0× 10−2,

and ϕ = 0.99.

Figure 3(a) shows the time averaged pressure distribu-

tion on the cylinder surface. As is well known, the pressure

distribution of the solid case has a local minimum around

80◦. On the other hand, with the porous surface (regardless

of its thickness, i.e., d = 0.2R and d = 0.5R), such a local

minimum point is not observed. The pressure distribution in

the front side are increased and this causes the drag increase

as observed in Fig. 2.

Figure 3(b) shows the pressure fluctuation on the surface,

C′
p. It is apparent that the pressure fluctuation is suppressed

by the porous media. Application of the thicker porous sur-

face (d = 0.5R) seems to be more effective than the thinner

(d = 0.2R). The reduction of C′
L observed in Fig. 2 is at-

tibuted to this reduction of pressure fluctuation.

Figure 4 shows the vorticity fields at the time instants

when the lift forces take the maximum values. Although

separation on the surface and accompanied vortex shedding

are observed in both cases, the vortices are more detached

in the porous case.

The difference is clearer for the pressure distribution, as

shown in Fig. 5. The low pressure region, which extends over

cylinder surface in the solid case, is significantly weakened in

the porous case. The porous surface is found to stabilize the

flow oscillation around the cylinder and weaken the vortices

shed therefrom.

Flow modification can also be seen in the velocity profile

of downstream wake. Development of the mean streamwise

velocities are compared in Fig. 6(a). In the solid case, the

streamwise velocity, < u >, decelerates near the cylinder

and it gradually recoveres in the downstream region. In the

cases of porous surface, the velocity profile shows peculiar

behavior. The velocity deficit recovers once around x/D = 3

similarly to the solid case. In the further downstream region,
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Figure 7: Pressure distribution on the surface (3D DNS,

Re = 1000): (a) time averaged pressure, Cp; (b) rms of

pressure fluctuations, C′
p

say x/D = 6, however, the velocity deficit develops again.

As shown in Fig. 6(b), the perpendicular velocity, < v >,

is accelerated in the far wake region: < v > is positive for

y > 0 and negative for y < 0, which makes the streams

directed away from the centerline.

Profiles of 3D flow (Re = 1000)

Generally speaking, the flow in the wake of the cylin-

der involves intensive three dimensionality at Re � 190

(Williamson, 1996), and such 3D effects are expected to

propagate back to the cylinder surface upstream. Here, we

present the results obtained by 3D DNS at Re = 1000 and

compare them with the 2D results presented above.

Figure 7(a) shows the distributions of mean surface pres-

sure. Smoothing of the distribution observed in the 2D flow

is also observed in the 3D flow. Base pressure of the solid

case and d = 0.2R case is found to be remarkably increased

in 3D flow as compared to the 2D case, whereas the base

pressure is less increased in d = 0.5 case,

The rms pressure fluctuation is shown in Fig. 7(b). The

profile is modified the similar manner as in the 2D flow,

but the amount of modification is smaller due to the 3D

development of the wake.

The 3D characteristics of the wake of clearly illustrated

by the isosurface of vorticity, as shown in Fig. 8. With the

porous surface, disturbances in the wake are remarkably sup-

(a)

(b)

Figure 8: Isosurface of vorticity, ω (3D DNS, Re = 1000):

(a) solid; (b) d = 0.5R.

pressed. While the shear layer in the solid case has strong

3D structure, such as streamwise vortices, such 3D behavior

is suppressed in the case of d = 0.5R. For an ordinary (i.e.,

solid) cylinder, the flow stays 2D at lower Reynolds num-

ber and goes through transition to 3D at a critical Reynolds

number, which is far below the Reynolds number considered

here. The present result shows that flow around a cylinder

with porous media is stabilized as if the Reynolds number

were reduced.

Reynolds number dependency

Simulation is performed at different Reynolds numbers,

i.e., 100 and 1.0×105, in order to investigate the dependency

on the Reynolds number. The property of porous media un-

changed from the simulation at Re = 1000 presented above,

i.e., Da = 1.0 × 10−2, dp = 2.0 × 10−2, and φ = 0.99.

Low Reynolds number flow (Re = 100). Figure 9 shows

the distributions of mean and rms pressure coefficients on

the surface. As can be judged from the location of minimum

value of mean pressure coefficient, the separation is hindered

by applying the porous media. The drastic change of profile

observed at Re = 1000, however, is not observed either in
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Figure 6: Mean velocity profiles (2D simulation, Re = 1000): (a) streamwise component; (b) perpendicular component. Solid

line, solid case; black dotted line, d = 0.2R; gray dotted line, d = 0.5R.

the mean or the rms profile.

The velocity profiles in the downstream region are shown

in Fig. 10. Slight difference can be observed between the

solid and porous cases in the vicinity of the cylinder. The

difference, however, becomes smaller in the downstream re-

gion and no clear difference is observed between them at

x/D = 6.

High Reynolds number flow (Re = 1.0× 105). The effect

of porous media at Re = 1.0× 105, which is the same as the

previous experiment of Takaishi et al. (2007), is studied by

means of large-eddy simulation.

The constant Smagorinsky model with the Smagorinsky

constant of C = 0.1 is used together with the van Driest

damping function in the region near the cylinder wall.

Contour of the instantaneous vorticity field is shown in

Fig. 11. It is observed that the two thin shear layer sepa-

rating on the surface grows parallely toward downstream.

These shear layers never rolls up, which means that the

vortex shedding is completely suppressed. And this stabi-

lized flow pattern looks quite similar to the result of PIV

measurement by Takaishi et al. (2007), although detailed

comparison should made in the future.

SUMMARY AND MECHANISM OF FLOW STABILIZA-

TION

We carried out numerical simulation of flow around a

circular cylinder surrounded by porous media.

The most effective parameters of porous media was found

by two-dimensional (2D) parametric test at Re = 1000. No-

table suppression of the lift force fluctuation is obtained

in the case of thicker porous surface. The flow statistics

show that the mean and the fluctuate pressure distributions

on the wall are significantly modified. The stabilized shear

layer similar to that in the 2D is also observed in the three-

dimensional (3D) simulation at the same Reynolds number,

i.e., Re = 1000, although the effect of porous media is weak-

ened due to the inherent 3D characteristics of the wake flow

development. The comparison among the results at differ-

ent Reynolds numbers reveals that the stabilizing effect of

porous surface works better at higher Reynolds numbers.

To conclude this paper, we refer to a possible mech-

anism of flow stabilization. The flow around a circular

cylinder shedding vortex exhibits periodic change, which ac-

companies a periodic change of stress to the control volume

adjacent to the surface. Thus, the flow system is roughly

modeled as a self-oscillatory system with a mass and a

spring.

Introduction of the porous media to system is similar to

add a damper, as shown in Fig. 12, which works proportional

to the velocity following to Darcy’s law, i.e.,

Δp = −
μ

k
Ubulk , (6)

which stabilizes the system. This direct mechanism should

be realized only in the proximity of the porous surface. This

mechanism is conjectured to work well when the boundary

layer is thinner and vorticity is concentrated in the proximity

of the surface. On the other hand, it may not work when

the boundary layer is much thicker than the thickness where

the damper has its direct influence. This mechanism may

explain the Reynolds number dependency observed in the

present study.
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Figure 9: Pressure distribution on the surface (Re = 100):

(a) time averaged pressure, Cp; (b) rms of pressure fluctua-

tions, C′
p.
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