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ABSTRACT
We present an experimental study of a sphere freely suspended in

a vertical turbulent jet. The sphere undergoes horizontal and vertical
oscillations. The evolution of the mean equilibrium position, ampli-
tudes and frequencies of the oscillating motion are described and the
governing parameters are identified. Experimental results are used to
investigate the origin of the lift force that attracts the sphere toward
the jet axis. Finally, the role of the jet’s turbulence on the system is
considered. A model is proposed which links the amplitude of the
sphere oscillations to external turbulent forcing.

INTRODUCTION
Suspending a sphere with a jet of air is a spectacular experiment

that can be conducted with a light sphere and a hair dryer. While the
drag of the sphere acts against gravity, a lift force brings it toward
the axis of the jet. When it is tilted the sphere remains caught in the
jet until a critical angle is attained. Behind what seems a perfect class
room example for fluid mechanics hides a complex set of phenomena,
from the creation of lift around a sphere to the interaction of a sphere
with an unsteady, fully turbulent flow.

Interestingly, that phenomena has been studied by O. Reynolds
in 1870. Nearly a century later, Goldshtik and Sorokin (1966) initi-
ated a series of theoretical studies of this flow and in 1996, Feng and
Joseph conducted experiments focused on the rotation of the sphere
in inclined jets.

In the present study, we consider the case of a sphere suspended
in a vertical turbulent jet–see Figure 2. In that case, the suspended
sphere continuously oscillates vertically and horizontally. Figure 3
shows a typical time record of the horizontal and vertical position
of the sphere. Notations are defined in Figure 1. This experiment
can be related to two ongoing research efforts. Firstly, recent stud-
ies have aimed at understanding the effect of turbulence on a single
particle or bubble. Bagchi and Balachandar (2003) studied the lift
and drag fluctuations of a particle in an isotropic turbulence with nu-
merical simulation. They showed that standard drag prevision failed
for a particle larger than the smallest turbulent scales. Similar chan-
nel flows were computed by Zeng et al., (2007) considering particles

Figure 1: Definitions Figure 2: Sphere suspended in
the jet visualized with smoke
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Figure 3: Time record of the vertical (top) and horizontal (bottom)
sphere position.

mean Reynolds numbers Reb below 500 and particle diameter to
Kolmogorov dissipation scale ratio db/η below 10. Our experiment
concerns other regions, the sphere Reynolds number being comprised
between 104 and 105 and db/η is above 5000. Fluid-structure in-
teraction is the second relevant topic. In particular, our experiment
resembles a spring-mounted cylinder set in another cylinder’s wake
as considered by Bokaian and Geoola (1984). The wake flow expe-
rienced by the downstream cylinder is similar to the jet flow for the
sphere. The effect of turbulence on such systems has not yet been
fully described.

In a first section, we briefly present the experimental set-up and
we describe the behavior of the system. Next, we show how do the
parameters of the system govern the characteristics of the sphere’s
motion, specifically its mean position in the jet and the frequencies
and amplitude of its oscillations. We then introduce a model that de-
scribes the effects of the jet’s turbulence on the motion.

DESCRIPTION OF THE EXPERIMENT

Control parameters
As schematically described by Figure 1, the system has 7 dimen-

sional parameters: the jet’s exit velocity u0, the sphere’s and jet’s
diameter db and d j, their respective density ρs and ρ j, the gravitational
acceleration g and the air’s viscosity ν. We can vary these parameters,
by changing the jet’s exit velocity u0, the exit nozzle diameter d j, the
sphere’s db and ρb, see Table 1. Our spheres are plastic marbles of
density ρb = 830 kg.m−3 except the largest one, a tennis table ball the
density of which is 110 kg.m−3.

Table 1: Sphere and jet diameters, associated symbols

d j ↓� db → 14.0 mm 16.0 mm 18.0 mm 20.0 mm 35.8 mm
5.53 mm × � � � �

8.74 mm � � �

12.36 mm � � �

20.00 mm �
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Non dimensional problem
From the seven dimensional parameters of our system, four inde-

pendent non-dimensional parameters can be built. The two first ones
are the density and diameter ratios, K = ρb

ρ j
and D = db

d j
. K is either

85 or 700. As a result, buoyancy force and added mass effects can be
neglected. D is ranging from 1.5 to 7. There seem to be a minimal
value D ≈ 0.6 below which the sphere cannot stay in the jet.

A third parameter is the jet Reynolds number, Re j =
u0d j
ν

. In our
experiments, Re j varies from 5 × 104 to 11 × 104. In that range, the
free jet flow keeps the same turbulent and self-similar characteristics
so we do not expect this parameter to play an important role. The
local sphere Reynolds number Reb =

u(z)db
ν

varies from 3 × 104 to
5.5 × 104 and its influence can also be neglected.

A fourth parameter is the Froude number which compares the
sphere weight to the incoming flow momentum, F = u0√

gd j
. F ranges

from 100 to 500.
The jet flow problem is described by z

d j
. We assume the mean

jet flow to be self-similar above z
d j
= 15, a value lower than recom-

mended by Wygnanski and Fiedler (1969) but which remains accept-
able. We choose the virtual origin z0 of each jet to be the common
origin for all distances. As a result, the self-similar jet mean flow ver-
ifies δ(z)

d j
= a z

d j
and u(r,z)

u0
= b d j

z h( δ(z)
z ). δ(z) is the jet half width. The

growth rate a is close to 0.1, while b which governs the decreasing
axial velocity and close to 6 (Panchapakesan and Lumley, 1993). h is
a function of the jet similarity variable δ(z)

z .
The local geometry of the sphere and jet flow is best described by

the ratio of the jet width δ(z) to the sphere diameter db. The reference
length scale of the problem is therefore chosen as l = db. For example,
in non-dimensional form, the mean sphere height is:

Zm =
zm
db

(1)

The reference time scale is taken as the period of a pendulum of length
db, t =

√
db
g . The non-dimensional oscillation frequencies are defined

as fr and fz. The last dimension is indeed the sphere mass m.
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Figure 4: Evolution of mean
height Zm (left) and zm

d j
(right)

as a function of F.
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Figure 5: Evolution of the posi-
tion rms. Rrms (�) and Zrms (�).
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Figure 6: Evolution of the hori-
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Figure 7: Evolution of the hori-
zontal frequency fz.
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Figure 8: Flow visualisations: (a) regime I, (b) regime II, (c) regime
III. Light is emitted from the left.
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Figure 9: Time record of the vertical (top) and horizontal (bottom)
sphere position in regime I (a), II (b) and II (c).

Measurements
The parameters of the jet flow are controled from the pressure and

temperature measures in the jets’ settling chambers.
The horizontal and vertical position r(t) and z(t) of the spheres are

deduced from high speed films. Although the motion is three dimen-
sional, the axial symmetry of the system enables us to capture main
features of the sphere oscillatory motion through two dimensional
views such as those in Figure 2. The calibration process provides
us with the position of the sphere’s center relatively to the center of
the jet’s exit nozzle with a relative precision within 1%.

The sampling frequency of is 100 frames per seconds, each ac-
quisition lasting 130 s. This enables to capture all the times scales of
the motion with precision smaller than 1.5% on the mean position and
5% on the standard deviation. Spectral analysis of the signal is used
to determine the oscillation frequencies.

Description of the motion
For a given sphere and jet flow, varying the exit velocity u0 pro-

duces different types of behavior. In this part, the flow is described
by considering one single set of jet and sphere: db = 16 mm and
d j = 8.74 mm. The results are presented in non dimensional form.
Figures 4 to 7 show the evolution of mean vertical position Zm, the
horizontal and vertical position rms Rrms and Rrms, and the oscillation
frequencies fr and fz.

Figures 4 and 5 suggest a segmentation of the data into three dif-
ferent regimes. Figures 8(a) to 8(c) provide flow visualizations of the
flow in each case while Figures 9(a) to 9(c) show sample trajectories.
Finally, Figure 10 shows a synthetic plot comparing the jet half-width
to the positions of the sphere in the three different regimes. Theses
regimes will now be described.

Regime I: Large sphere behavior. From F = 120 to 175,
the sphere is located in the development region of the turbulent jet.
Figure 10 shows that the sphere is larger than the local jet width.
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Figure 10: Scatter plots of the sphere position for the three differ-
ent regimes. The horizontal bars gives the rms amplitude at different
mean height. The full line on the right is the jet half-width. Vertical
dashed line is the sphere radius.

The jet flow is thickened by the sphere and considerably deflected as
the sphere moves aways from the jet’s axis (Figure 8(a)). The mean
height Zm grows non-linearly (Figure 4), while the position rms re-
mains almost constant (Figure 5). As seen in Figure 6 and Figure 7,
the frequencies of the horizontal and vertical oscillations evolve in a
puzzling non monotonous way.

Regime II: Regular behavior. From F = 175 to 250, the mean
position of the sphere begins to enters the self-similar region of the
free jet. In this region, the mean velocity on the axis, u(Zm) behaves
as u0/Zm. Considering that the drag force felt by the sphere at height
Zm is roughly proportional to u2(Zm), and equilibrates the weight of
the sphere, Zm should be proportional to u0. This is confirmed by the
linear behavior obtained in Figure 4.

Figure 6 and 7 show that the oscillation frequencies decrease reg-
ularly from 0.3to 0.1 for fr and from 0.055 to 0.035 for fz. Note that
these frequencies are much lower than the frequencies associated with
the jet and sphere flow’s turbulence. As Figure 5 shows, in that range
Rrms and Zrms grow linearly with the same rate, until F = 250. Then
Zrms suddenly explodes. Flow visualizations such that of Figure 8(b)
reveal that the jet is still significantly deflected by the sphere. Fig-
ure 10 proves that the sphere’s radius is now smaller than the local
jet’s half width.

Regime III: Chaotic behavior. Above F = 250, the motion
looses regularity, as shown by the trajectory plotted in Figure 9(c).
The sphere is now small compared to the local jet width, see Fig-
ures 8(c) and 10. Large amplitude events occur, the sphere being
rather unstable in the jet. An example of a trajectory is shown in Fig-
ure 11: the sphere falls down half it’s mean height before being caught
back in the jet. This type of event leads to large vertical rms Zrms as
shown in Figure 5. Surprisingly, the mean height, the horizontal rms
and the main oscillation frequencies keep evolving in the same regular
way as before. At last, Figure 10 shows that the jet grows faster than
the horizontal position rms. The amplitude of the oscillations remains
smaller than the jet width.

In the next section, we will compare different configurations to
understand the general mechanisms of the system.

NON DIMENSIONAL STUDY
In this section we present all the experimental data using non

dimensional variables in order to identify general characteristics of
the motion. In order to compare the motion of sphere for a generic
jet-flow, we limit ourselves to motions of spheres located in regions
where the jet may be considered self-similar (zm ≥ 15d j). For the
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Figure 11: Scatter-plot and a trajectory exhibiting an extremely large
variation of sphere position.
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Figure 12: Evolution of Zm as a function of F√
KD3 .

particular case detailed above, the data that remains is limited to the
regime III, above the dotted line shown in Figure 4. The large varia-
tion of the parameters (Table 1) insures that Regime I and II remain
included in the following analysis. Although the flow was not yet self-
similar, the previous description of Regime I and II remains valid.

Mean height
If we consider locally a self-similar jet flow profile of maximum

velocity u(z), half-width δ(z) and a sphere of diameter db located on
the axis (r = 0) of that flow, the drag Fz(r, z) of the sphere verifies:

Fz(0, z)
1
2ρ jπ

d2
b
4 u(z)2

= Cz

(
δ(z)
db

)
(2)

through its argument the drag coefficient Cz depends on Zm, see (1).
The present problem differs from the classical case of a sphere im-
mersed in an uniform flow. At equilibrium, we have z = zm and

Fz(0, zm) = mg = 4
3π

d3
b
8 ρbg. Using the jet flow assumptions and (1)

we get:

Zm =
F√
KD3

√
3b2

4
Cz (Zm) (3)

Through relation (3), Zm depends on F√
KD3 . The mean height of the

sphere corresponds to the position where the jet flow momentum equi-
librates the sphere weight.

Figure 12 shows Zm as a function of F√
KD3 for the different con-

figurations described in Table 1. A good correlation is obtained. The
drag coefficient Cz, not shown here, is found to increase linearly from
0.1 to 0.3 with Zm, across the entire range. Even for high Zm, Cz has
not reached an asymptotic value.
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Figure 13: Non-dimensional frequency fr .

Horizontal oscillation frequency
For a sphere located at a distance r from the center of a self-

similar jet profile at height zm, the lift force Fr(r, zm) fulfills:

Fr(r, zm)
1
2ρ jπ

d2
b
4 u(zm)2

= Cl

(
δ(zm)

db
,

r
δ(zm)

)
(4)

A Taylor expansion around r = 0 gives

Fr(r, zm)
1
2ρ jπ

d2
b
4 u(zm)2

≈ −Kr (Zm) × r
δ(zm)

(5)

Kr is the non-dimensional lift force constant and is function only of
the local sphere to jet width ratio Zm defined in (1). This leads us to
introduce an oscillation pulsation ωr for a sphere of mass m related to
a physical spring-constant mω2

r so that:

−Fr(r, zm) =
1
2
ρ jπ

d2
b

4
u(zm)2Kr (Zm) × r

δ(zm)
= mω2

r × r (6)

Replacing m by 4
3πρbd3

b and converting the pulsation into the non-

dimensional horizontal oscillation frequency fr = 1
2πωr

√
db
g , we get:

fr

√
KD3

F
=

1
2π

Zm
−3/2

√
3b2

4a
Kr (Zm) (7)

Experimental results shown in Figure 13 confirm that fr
√

KD3
F reduces

to a function of Z−3/2
m , in accordance with (7). The dependence of Kr

on Zm is commented below. A similar approach can also be followed
for the vertical frequency fz.

Nature of the lift force. Two physical mechanism may be re-
ferred to for understanding the lift force experienced by the sphere,
although the present flow is probably too complex be be fully repre-
sented by either one.

For a sphere larger than the jet (Regime I, Zm < 6, Figure 10), the
phenomenon that is visually observed (Fig 8(a)) is the deflection of
the jet by the sphere. This refers to the Coanda effect. By reaction, the
jet deflection attracts the sphere toward the center of the jet. Experi-
mental studies conducted with plane jets over cylinders by Newman
(1961) show that the position of separation is governed by the initial
ratio of jet width to cylinder diameter. In our case, the mechanism is
three dimensional, a situation which has little been studied before. A
mean velocity profile made with Digital Particle Imagery Velocime-
try (DPIV) one diameter behind the sphere shows that the deflection
of the jet (the lift force) is organized at first into a vortex pair. This
pair later disappears and the flow collapses into an almost uniform
deflection of the jet.
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Figure 14: Lift coefficient Cl as a function of r/zm for Zm/D = 5, 8.75
and 12.5.

Figure 15: Lift and drag force constants Kr (�) and Kz (�)

Now, when the sphere becomes relatively small compared with
the jet’s half-width the problem evolves toward that of a sphere in
a shear flow. An analytical expression for the lift of a small invis-
cid shear on the sphere was derived by Auton (1987) and yields a lift
force proportional to the shear intensity. In that case, the sphere is dis-
placed toward high velocities that is, in our case toward the center of
the jet. This is defined by Auton (1987) as positive lift. However, nu-
merical simulations by Kurose and Komori (1999) for Reb ≤ 500, and
experiments by Yamamoto and al. (1993) fot Reb ≤ 3.5 × 104 show
that the lift force is now negative that is toward small velocities. As
pointed out by Sakamoto and Haniu (1995), vortex shedding process
in the shear could explain this negative lift. Numerical simulations by
Zeng et al. (2007) of a sphere in a turbulent channel flow show the
same behavior. Finally, in the system of two cylinders in tandem in a
cross-flow, the downstream cylinder experiences a lift force oriented
toward the center of the other cylinder’s wake (Bokaian and Geoola
1984), again a negative lift force.

We evaluated the lift force on the sphere using both the DPIV
data and traditional force measurements for Zm = 5, 8.75 and 12.5.
With DPIV, the mean lift force is found by integrating the transverse
momentum flux behind the sphere. The lift coefficient as defined in
(4) is plotted in Figure 14. There is a good agreement between the
two types of force measurements for Zm = 5. For all Zm, the curves
have a similar behavior indicating that in that range a positive lift,
of the Coanda type, dominates. As described above, the slope Kr of
the lift force around r = 0 transforms into a non-dimensional oscil-
lation frequency, see (6). The frequencies calculated from the slope
of the lift force are shown as the arrow indicated dashed squares on
Figure 13. There is excellent agreement with the recorded oscillation
frequencies. This validates a linear oscillator model across most of
the experimental data.

Inversely, the frequency data shown in Figure 13 may be used to
determine the non dimensional lift force constant defined in (5). The
results is shown in Figure 15. Kz, the vertical counterpart to Kr is
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evaluated the same way and also shown. Kr reaches a maximum for
Zm = 8 and then decreases. However, the evolution of Kr does not
prelude a negative lift force until beyond Zm = 20. The negative shear
lift regime could not be reached in our experiment nor measured: for
large Zm, the deflection of the jet became too small to set a reliable
lift force. On the other hand, the vertical force constant Kz increases
monotonously, like Cz, and overcomes Kr .

TURBULENCE FORCED OSCILLATOR

Formulation
In this section, we investigate to what extent may the system be

described by an harmonic oscillator model. Neglecting the azimuthal
motion of the sphere, the linearized equations of motion can be writ-
ten in non dimensional form as:

R̈ + 2ξrΩrṘ + Ω2
r R =

Fr,ext

mg
+ ΥrzΩ

2
r Z (8)

Z̈ + 2ξzΩzŻ + Ω2
z Z =

Fz,ext

mg
+ ΥzrΩ

2
z R (9)

Using (3) and (7), the oscillation pulsations are:

Ω
2
r =

1
a

Kr
Cz

1
Zm

(10)

Ω
2
z = 2

Kz
Cz

1
Zm

(11)

Concerning the damping terms ξr and ξz we may assume that the
oscillation dynamics is much slower than the flow timescale around
the sphere d

u . Under this quasi-steady assumption, linearizing drag
with a perturbation velocity gives the dimensional damping forces
1
2ρ jπ

d2
b
4 Czu(z)ṙ and 1

2ρ jπ
d2

b
4 Cz2u(z)ż. In non-dimensional form, we

obtain the following damping ratios:

ξr =

√
3a
16

1√
K

Cz√
Kr

√
Zm (12)

ξz =

√
3
8

1√
K

Cz√
Kz

√
Zm (13)

These are small quantities that depend on K and which grow with Zm.
Our system is lightly damped. Fr,ext and Fz,ext are external forces due
to the jet’s turbulence. Finally Υrz and Υzr are constants representing
interaction between the horizontal and vertical motions.

Excitation force, frequency cutoffs and resonance
In this part, we propose a description of the oscillations rms

through a spectral study of the oscillator equations (8)-(9) considering
the role of the turbulent forcing terms Fr,ext and Fz,ext . We suppose
that radial and axial turbulent velocity fluctuations v′ and u′ perturb
the oscillator. Supposing v′ ∝ u′ and u′/u << 1 and similarly, that
turbulent structures of size l > db have a large timescale l/u′ com-
pared to the mean flow time scale db/u, the linearized lift and drag
perturbations due to turbulence gives the following forcing term in
(8) and (9):

Fr,ext

mg
=

2u′Cl/Cz + v′

u(zm)
≈ v′

u(zm)
(14)

Fz,ext

mg
=

2u′

u(zm)
(15)

The forcing terms reduce to the turbulent velocities fluctuations rates.
Spectral density Du of the axial fluctuations is shown in Figure 16
as a function of S t = f u(z)

δ(z) . This axial velocity fluctuation spectrum
has been obtained using a single hot wire DANTEC 55P11 on the jet
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Figure 16: Spectral density Du (−) as a function of S t = f u(z)
δ(z) . Spec-

tral responses |HR |2Du (−) and |HZ |2Du (−)

axis at z/d j = 35 with u(z) = 19.6m.s−1 and δ(z) = 1.65 × 10−2m.
The spectra have been obtained using 200 data blocks, acquired at an
acquisition rate facq = 22kHz and low-pass filtered at fc = 10kHz.
The spectra peaks around S t = 0.2, which corresponds to the jet large
scale structures (Tso and Hussain, 1989). Above that, the turbulent
energy decreases as S t−5/3. Taking the Fourrier transform of (8) with-
out the coupling term, we obtain the classical result for Rrms:

R2
rms =

∫
+∞

0
|HR(ω)|2Dv(ω)dω (16)

with |HR(ω)|2 = 1
(Ω2

r−ω2)2+(2ξrΩrω)2 the transfer function of the hori-
zontal oscillator. Here Dv is the spectral density of the radial velocity
fluctuation. The spectral response of the horizontal and vertical oscil-
lator for K = 700 and Zm = 8 is also shown in Figure 16, with Dv

approximated as v
′2

u′2
Du using the self-similar turbulent intensities u′

and v′ measured by Panchapakesan and Lumley (1993). The peaks,
representing the oscillations frequencies, occur in a very low jet fre-
quency zone which is associated to large scale intermittent events.

The sphere should not be receptive to turbulent structures smaller
than its size, because it averages them out. Therefore, it acts as a low-
pass filter with a cutoff frequency ωc. With the cutoff, the spectral
density of the excitation Dv is changed into:

Dc
v(ω) =

Dv(ω)
1 + (ω/ωc)α

(17)

where α represents the steepness of the low pass filter. The cutoff
frequency S tc above which the turbulent eddies are filtered out verifies
S tc ∝ u

′
u(z)
δ(z)
db
= a u

′
u Zm with u

′
u the axial turbulence level in a jet,

around 0.25 (Panchapakesan and Lumley, 1993). Transformingω into
S t with ω = b

a
F

D3/2
1

Z2
m
× S t, we use (3), (10) to (13) to find:

Rrms = aZm

⎛⎜⎜⎜⎜⎜⎜⎝
∫
+∞

0

Dc
v(S t)

( Kr
Cz
− S t2 4

3a K 1
Cz

1
Zm

)2 + (S t)2
dS t

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

(18)

Zrms = aZm

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫
+∞

0

2Dc
u(S t)

(2a Kz
Cz
− S t2 4

3a K 1
Cz

1
Zm

)2 + (2S t)2
dS t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1/2

(19)

The same approach has been used for Zrms. In Figure 17, Rrms and
Zrms given by (18) and (19) are compared to experimental results.
This model gives a correct prediction of the position rms up to Zm = 8.
K is chosen as 700, and the choice of the low pass filter does not
influence significantly the results because the oscillator is itself a low
pass filter. Dv was again approximated by v

′2
u′2

Du.
As the sphere rises, the jet’s most energetic frequencies decrease

like 1
Zm

, faster than the oscillation frequencies that decrease like 1
Z1/2

m
.

As a result, the oscillator captures a rising amount of energy from
the jet’s energy containing frequencies. As seen in Figure 17, we
should expect from the model given by (18) and (19) an increase in
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Figure 17: Rrms and Zrms as a function of Zm, for K = 700. Predic-
tions given by (18) and (19) is shown in dotted line
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Figure 18: RMS normalized probability density functions for hori-
zontal (�, lower axis) and vertical (�, upper axis) position. Zm = 6:
Fig. 18(a) and Zm = 11.5: Fig. 18(b)

the slope of the horizontal rms Rrms first: the horizontal oscillation
frequency being higher, the associated transfer function will interact
with the fluctuation’s spectral maximum before the vertical one (see
Figure 16).

This model therefore fails to predict the dramatic increase in Zrms.
Nevertheless, from experimental observations like the large trajectory
shown in Figure 11, we believe that the expected increase of Rrms is
instead converted into vertical rms Zrms by such intermittent events.
This mechanism cannot be accounted for by our model. Figures 18(a)
and 18(b) which show the histograms pf the sphere position confirm
that when Zm ins increased from 6 to 11.5, the r-pdf remains unaf-
fected and symmetric whereas the z-pdf is skewed, with a net increase
of the probability of negative z. This is due to trajectories such as that
of Figure 11. These non-symmetric deviations cannot be accounted
for by this model and remain unexplained.

CONCLUSION
An experiment on the suspension of a sphere in a vertical

turbulent jet has been realized considering a rather large variation
of the different control parameters. The behavior of the system was
classified into three different regimes that depend on the relative
sphere to jet-width ratio. A compilation of the experimental results
has showed that the dominant parameters influencing the dynamics
of the sphere in the jet have been identified and enabled a successful
correlation of the data (mean equilibrium position, amplitude and
frequencies of the sphere oscillatory motion). Experimental evidence
suggests that the lift force remains attractive and is of the Coanda
effect nature, namely a deviation of the jet flow after interaction
with the sphere surface. A turbulence-forced oscillator model has
been developed which represents fairly the horizontal and vertical
oscillations up to a medium sphere to jet ratio. The failure of that
model to explain the change of behavior that occurs beyond is linked
to the apparition of intermittent events. Further studies of this type of
oscillator are needed to describe this particular chaotic regime and
ultimately explain the ejection of the sphere.
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