
LARGE EDDY SIMULATION OF MIXING IN COASTAL AREAS

Federico Roman, Goran Stipcich, Vincenzo Armenio
Dipartimento di Ingegneria Civile e Ambientale,

Università degli Studi di Trieste
P.le Europa 1, 34127-Trieste, Italy

froman@units.it; goran.stipcich@phd.units.it; armenio@dica.units.it

Roberto Inghilesi, Stefano Corsini
Dipartimento Tutela delle Acque Interne e Marine,

Istituto Superiore per la Ricerca e Protezione Ambientale (ISPRA),
Via Vitaliano Brancati 48, 00144-Roma, Italy

roberto.inghilesi@ispraambiente.it; stefano.corsini@ispraambiente.it

ABSTRACT

The study of mixing in coastal area is a key issue in envi-

ronmental fluid mechanics. In most applications it requires

a three dimensional approach in order to take into account

phenomena related to buoyancy effects and to complex ge-

ometry deriving from bathymetry, coast-line and anthropic

structures. In the present paper a LES methodology is pre-

sented and discussed aimed at studying turbulent mixing in

coastal areas under general forcing and geometric configu-

ration. The strong grid anisotropy, between the horizontal

length scale of kilometers and the vertical one of about 10-50

meters , is handled expressing the sub-grid stress by means

of a directional eddy viscosity model. The density anomaly,

due to the combination of salinity and thermal field, is

treated as an active scalar in the momentum equation. Ge-

ometry is modeled using a combination of curvilinear grid

and the Immersed Boundary Method (IBM). The model

is applied to the investigation of two cases: the estuarine

area of Tevere river; mixing in the Muggia bay under wind

forcing. Results show the coastal dynamics to be strongly

affected by buoyancy effects, Coriolis force and the confor-

mation of the domain.

INTRODUCTION

The Ocean Mixed Layer (OML) is the upper layer of

the ocean, adjacent to the air-sea interface, where exchange

of heat, energy and momentum with the atmosphere take

place. The OML is typically 10-50 meters deep in open

water basins, and mixing is mainly driven by the wind

shear stress, and heat exchange with air, which produces

either convective or stable stratified conditions. The wind

stress produces mechanical turbulence and, indirectly, ad-

ditional vertical mixing through the generation of surface

waves and Langmuir circulation. A review on OML is in

Phillips (1977). In coastal area additional processes take

place, which make modeling of mixing in the upper layer

of the ocean more demanding. These regions are in general

shallow and characterized by complex geometry. The shal-

lowness makes the bottom surface layer to encroach upon the

OML, hence producing a single turbulent layer extending

along the whole water column. The shallowness also pro-

duces wave breaking and generation of along-shore currents.

The presence of the coast-line, rapid varying bathymetry

and anthropic structures introduces complexity in the flow

field, making it essentially three-dimensional. In semi-closed

basins (i.e. bays) the interaction between the wind-driven

surface current and the coast-line develops a mean circula-

tion in the vertical planes, essentially characterized by the

inversion of the mean velocity field in the bottom layers of

the water column with respect to the upper layer current.

This creates additional shear resulting in enhanced turbu-

lent production. Finally, buoyancy effects interacting with

bathymetric gradients may favor additional circulation as-

sociated, for instance, to the downwelling of cold/salt water

along the inclined bottom surface.

Traditionally, the two-dimensional shallow-water approx-

imation has been used in coastal problems, through the

use of numerical models where three-dimensional effects are

parametrized by means of bulk quantities containing coeffi-

cients requiring empirical calibration. Such approach has

been shown to be effective in reproducing the hydrody-

namics characteristics of large scale shallow basins, where

circulation in the vertical planes and buoyancy effects are

negligible compared to the mean horizontal transport (Tsa-

nis et al., 2007). In all other cases three-dimensional models

must be used. Apart the numerical methods (time inte-

gration, space discretization, type of grid) these models

mainly differ for the turbulence closure employed. Among

them, recent models try to take advantage of Large Eddy

simulation (LES) closure. The main advantage of LES

compared with classical Reynolds Averaged (RANS) ap-

proach consists in the fact that the largest scales of the

motion, which in a shallow-water three-dimensional basin

are strongly anisotropic, are directly resolved through a

three-dimensional time-dependent simulation, whereas the

sub-grid scales (SGS) are parametrized through a closure

model. Due to the geometric and physical complexities aris-

ing in coastal processes, a LES simulation is expected to

give more accurate results compared to a RANS-like numer-

ical model which generally uses turbulence models derived

from industrial applications (mostly the aerodynamic field)

and calibrated on archetypal cases typically far from be-

ing representative of coastal applications. The aim of the

present research is to develop an ad-hoc three-dimensional

LES model suited for coastal applications, thus able to take

into account the physics and geometric complexities usually

encountered in real-case applications. The model (LES-

COAST) was developed in cooperation with the Department

of Protection of Internal and Marine Waters of the Italian

Agency for the Protection of the Environment (ISPRA). A

description of the model is given below together with a dis-
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cussion on the application to two different representative

cases.

THE MATHEMATICAL MODEL

In coastal flows, often three-dimensional phenomena as

upwelling and downwelling play a primary role, due to com-

bination of the forcing terms of sea currents, wind action

over the surface, buoyancy effects related to density anoma-

lies, and Coriolis force. However, a three-dimensional coastal

basin has two characteristic length-scales: the horizontal one

(x and z axis, also denoted as 1 and 3 in the present paper) is

of order of kilometers, while the vertical one (y axis, also de-

noted as 2) is of the order of 10-100 meters. This introduces

problems in turbulence modeling as well as in numerical in-

tegration of the governing equations.

Moreover, coastal hydrodynamics is often characterized

by complex geometry, mainly due to variation in bathymetry

and coast-line, and to the presence of anthropic structures

such as moles, jetties and wave breakers. In order to deal

with geometric complexity, still retaining the accuracy and

simplicity of structured-grid solvers, we use the IBM tech-

nique recently developed by Roman et al. (2008). This

techniques merges the advantages of the curvilinear formu-

lation of the Navier-Stokes equations with those of the IBM

techniques.

We apply the Navier-Stokes equations under the Boussi-

nesq approximations. In coastal applications, the density

anomaly, due to salinity and temperature gradients, is small

with respect to the bulk density of the water. Thus the den-

sity variations can be neglected in the governing equations,

but in the gravity term present in the vertical momentum

equation. When using LES methodology the variables are

filtered through application of a low-pass filter and a SGS

contribution appears. The filtered Boussinesq form of the

Navier-Stokes equations, in Cartesian form reads as:

∂uj

∂xj

= 0 (1)

∂ui

∂t
+

∂ujui

∂xj

= −
1

ρ0

∂p

∂xi

+ν
∂2ui

∂xj∂xj

+2Ωi×ui−
ρ

ρ0
gi−

∂τij

∂xj

(2)

∂S

∂t
+

∂ujS

∂xj

= kS

∂2S

∂xj∂xj

−
∂λS

j

∂xj

(3)

∂T

∂t
+

∂ujT

∂xj

= kT

∂2T

∂xj∂xj

−
∂λT

j

∂xj

(4)

which are the continuity, the momentum and the conser-

vation equation of salinity and the energy equation written

for the temperature. The symbol ” · ” represents the filter-

ing operation, ui is the velocity component in i–direction,

xi is the i–direction space coordinate, t is time, p is kine-

matic pressure (pressure divided by reference density ρ0) S

is salinity and T is temperature. The term ν is the kinematic

viscosity, Ωi is the i–component of the rotation vector, g is

the gravity vector. The values kS and kT in Eqs.(3,4) are

the molecular diffusivities of salinity and temperature. The

terms τij , λS
j

and λT
j

are respectively the SGS momentum,

salinity and temperature fluxes. The density ρ is related to

temperature and salinity through the state equation:

ρ = ρ0[1 − α(T − T0) + β(S − S0)] (5)

where ρ0 is the density at a temperature T0 and salinity S0

and α and β are the thermic and salinity expansion coeffi-

cient respectively.

As regards SGS modeling, the dynamic model may be

not suited for our application for two main reasons: first,

literature studies show that the dynamic model is not suited

for high Reynolds number, large-scale flows (Bou-Zeid et al.,

2005), due to the lack of scale invariance between the SGS

and the subtest stresses; second, the explicit filtering re-

quired by the dynamic procedure may be problematic when

working with IBM. Thus we move back to the Smagorinsky

model. However, the discretization of a 3D coastal basin

commonly leads to pancake − like anisotropic cells, with

an aspect ratio of 10 − 100 : 1, and this can give rise to

modeling problems in LES when reproducing the sub-grid

stress (SGS). For unequal-sided cells the Deardroff equiva-

lent length scale Δeq = (Δ1Δ2Δ3)1/3 is commonly used,

where Δi (i = 1, 2, 3) is the cell side in the i−direction.

This is a good choice for weakly anisotropic grid, but for

cigar − like or sheet − like cells, as in our cases, it de-

termines anisotropic filtering of a turbulent field which is

essentially isotropic. Consequently, inaccuracies may occur

in the evaluation of turbulent statistics (Kaltenbach, 1997).

Scotti et al. (1993) investigated the performance of the

Smagorinsky model with different length-scales in the case

of inhomogeneous flow. They defined a single length-scale

obtaining a model which is close to that for isotropic case.

Successively Zahrai et al. (1995) proposed a model with dif-

ferent length-scales. Our strategy consists to move back to

the Smagorinsky model with different length-scales, a solu-

tion which is well suited for highly anisotropic filtering cells,

being the use of a single characteristic length-scale no longer

appropriate (Sagaut, 1998). This model works well in con-

junction with wall layer models and immersed boundaries.

The SGS stress is expressed as the sum of a scale similar

component and an eddy viscosity component as:

τSGS,ij = −2νtSij + uiuj − ui uj (6)

where Sij is the resolved strain rate tensor

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(7)

νt is the eddy viscosity.

The scale similar part in Eq.(6) accounts for local back-

scatter and anisotropy, whereas the Smagorinsky part of the

model supplies most of SGS dissipation. The original model

is isotropic, based on the assumption that the small scales

tend to isotropy, which is not true for large scale coastal

dynamics, where the SGS part of the spectrum contains a

wide range of anisotropic structures. The eddy viscosity is

evaluated as the product of a length-scale CΔ, proportional

to the grid size, and a velocity scale CΔ|S|, where C is a

constant and |S| is the contraction of the strain rate ten-

sor. The requirement of having a single length-scale in an

anisotropic grid can be overcome by considering different

eddy viscosities for the horizontal and for the vertical direc-

tion respectively. This is a standard technique in large-scale

ocean models. Two eddy viscosities νt,h and νt,v are com-

monly used in geophysical fluid dynamics (Pedlosky, 1987),

with h and v denoting the horizontal and the vertical compo-

nent respectively. The diffusive term for the Navier-Stokes

equations reads as:

Fi =
∂

∂x1
νh

∂ ui

∂x1
+

∂

∂x2
νh

∂ ui

∂x2
+

∂

∂x3
νv

∂ ui

∂x3
(8)

where νh = ν + νt,h and νv = ν + νt,v. Although widely in

use, this formulation is not mathematically consistent since
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it takes into account only deformation and not rotation in

the definition of the stress. The assumption of linear pro-

portionality with Sij is not true if we introduce directional

eddy viscosities. A correct tensorial analysis requires three

different eddy viscosities (Kamenkovich, 1977; Mills, 1994):

ν11 = ν13 = ν33, ν12 = ν23, and ν22, with νij = νji. Using

a Smagorinsky model we have the relations

ν11 = (CLh)2|Sh| (9)

ν12 = (CLv)2|Sv| (10)

ν22 = (CLv)2|Sr | (11)

where Lh and Lv are proper length-scales for horizontal and

vertical direction respectively, while the strain rate tensor is

decomposed as

|Sh| =

√
2(S

2
11 + S

2
33 + 2S

2
13) (12)

|Sv| =

√
4(S

2
12 + S

2
23) (13)

|Sr| =

√
2S

2
22 (14)

If we consider ν11 = νt,h and ν12 = νt,v the diffusive term

for the horizontal plane can be written as in Eq.(8). While

for the vertical direction 2 we have

F2 =
∂

∂x1
νv

∂ u2

∂x1
+

∂

∂x2
νv

∂ u2

∂x2
+

∂

∂x3
νr

∂ u2

∂x3
(15)

where νr = ν + νt,r and νt,r = ν11 − 2ν12 + 2ν22. The

coefficients of the model need calibration and this is still an

open issue for lacking of proper test cases.

The algorithm integrates the equations using the

curvilinear-grid, fractional-step method of Zang et al.

(1994). All terms are treated explicitly through second-

order Adams-Bashfort technique except the diagonal diffu-

sive ones, which are treated implicitly. Spatial derivatives

are treated using centered second-order finite differences, but

the advective terms that are discretized using a 3rd-order

accurate QUICK scheme. The pressure equation is solved

using a line-SOR algorithm, with line solution in the verti-

cal direction and point iteration in the horizontal directions,

in conjunction with a Multigrid technique to speed up the

convergence.

The high value of Re and the presence of roughness in

this kind of applications makes unfeasible the direct solution

of the near wall layer, thus the problem is approached pa-

rameterizing the near-wall layer through the use of a model.

We impose a wall layer model as follows: to find the velocity

at an interface node IB we consider its normal to the im-

mersed boundary, then we interpolate the resolved velocity

field onto a fictitious node PP lying on this normal line. If

the logarithmic law is assumed to hold on both these nodes

IB and PP , one obtains the following relation to determine

the velocity at IB

utan,IB = utan,PP −
1

k

√
τw

ρ0
log

dPP

dIB

(16)

with utan the tangential velocity, k the von Karman con-

stant, τw the wall stress, ρ0 the density, and d the distance

from the immersed boundary. To model the eddy viscosity

part of the SGS stress we use a Smagorinsky model.

Close to the wall the eddy viscosity is computed using

a length-scale and a velocity-scale characteristic of the non-

resolved structures, and using the equilibrium assumption

they can be related to the resolved motion through the grid

size and the strain rate tensor. The presence of an immersed

boundary can however yield an incorrect representation of

these scales. Hence, at the IB interface we use the logarith-

mic law to derive the following relationship:

νt,IB = ckuτdIB (17)

which relates the length-scale and the velocity-scale to the

presence of the immersed boundary; here uτ is the friction

velocity (uτ =
√

τw/ρ0). The model is described in details

in Roman et al. (2009).

The SGS fluxes of the scalar quantities are parametrized

in a very simple way, using a model similar to that of mo-

mentum transport and evaluating the eddy diffusivities as

Prsgs = Scsgs = 0.5, with Prsgs and Scsgs the Prandtl

number (Prsgs = νt/kt,T with kt,T the thermal eddy diffu-

sivity) and Schmidt number (Scsgs = νt/kt,S with kt,S the

salinity eddy diffusivity) respectively. This value has been

found in literature to hold for a wide range of conditions of

stratification, from convective conditions to weakly stratified

ones. In strongly stratified cases a different closure should

be employed for the SGS scalar fluxes.

Finally, the effect of the wind over the free surface is

modeled through direct application of the friction velocity

uτ associated to the wind stress, obtained as

uτ = U10

√
C10

ρa

ρ0
(18)

where U10 is a fixed value of wind speed at 10 m over the

surface, ρa is the air density, and the parameter C10 is cal-

culated as (Wu, 1982):

C10 = (0.8 + 0.065 U10)10−3 (19)

The wind stress is not constant in space, rather it has a

certain statistical distribution around a mean value, so that

the final expression for the friction velocity is

uτdef = uτ G(0 ; q) (20)

where G is a random Gauss function with zero mean value

and variance q.

APPLICATIONS: RESULTS AND DISCUSSION

The model has been used to investigate two different

coastal areas. The first application regards the mixing ef-

fects due to the incoming flow of fresh water from Tevere

river into the Thirrenian sea, the second one regards the

analysis of mixing and circulation within a semi-closed bay

in the Trieste harbor area.

Case 1: Tevere’s estuarine flow

The area of interest is the estuary of Tevere river, near

Rome, in Italy, whose sketch is reported in Fig.(1). The do-

main covers an area of 5 km × 6 km in the horizontal plane,

while on the vertical one the maximum depth is of about

30 m. We use 385×385 grid points along the horizontal direc-

tions x and z, and 33 grid points along the vertical direction

y. This gives rise to cells of about 10 m × 10 m × 0.4 m.

Fig.(2a) shows the free surface grid plane, and Fig.(2b) is

the grid bottom surface constructed from bathymetric data.

The coast-line and the upper part of the bathymetry are

treated using the IBM.

The boundary conditions are chosen in the following way.

On the sea bottom and on solid walls we use a wall function.
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On the vertical boundary SE-SO we consider the presence

of a along-shore sea current of 0.02 m/s, which is a typical

value for the region examined. On the NE-SE boundary

we consider an inflow condition corresponding to the Tevere

river. This inflow was created by a pre-simulation of a tur-

bulent channel flow with the same geometry and flow-rate

of the river. The average velocity is about 0.3 m/s, and the

flow rate is about 300 m3/s, typical winter time values for

Tevere river. The channel flow is pre-simulated considering

the presence of the Coriolis force. On the sea surface we

consider a free-slip condition, while on the remaining, open,

boundaries an Orlanski condition is enforced.

The incoming flow from the river has the density of fresh

water, which is smaller than the salt water’s density of the

receiving basin. Stratification is only due to this salinity

difference. The analysis of the horizontal length-scales and

of the typical velocity scales shows that the Coriolis force

cannot be neglected.

Figure 3a shows the contour plot of the horizontal veloci-

ty component u on an horizontal plane. Once in the sea, the

river flow tends to deviate north, driven by the southern sea

current and by the Coriolis force. The main current merges

into the sea far from the coast-line, and a large recirculation

area is trapped in between. The Coriolis force produces an

asymmetric profile with a larger velocity near the northern

bank of the river’s mouth. Fig.(3b) shows a plot of the ver-

tical velocity v on an horizontal plane. The contour legend

shows that the vertical velocity is one order of magnitude

smaller than the horizontal one, as expected for these kinds

of flows. The two figures refer to an horizontal layer just be-

low the sea surface. The same overall behavior is observed

at different depths. Figures 4a,b show the horizontal and

vertical components of eddy viscosity νt, 2 m below the sur-

face. The vertical eddy viscosity is one order of magnitude

smaller than the horizontal one and they are large within

the current showing large turbulent mixing in this region.

In Figs.5a,b density contours at different depths are

shown. Because of the buoyancy, the light fresh water com-

ing from the river tends to rise over the salt water and to

spread in the horizontal directions. Then the fresh water is

transported by the mean current and turns north without

reaching the coast far from the river’s mouth.

The results show that the model is able to catch the

expected behavior for sea coastal area. A qualitative com-

parison is shown in Fig.(6) between velocity vectors obtained

in the simulation and a satellite image highlighting the main

river stream.

Case 2: Trieste harbor area

The aim of this application is to study the three-

dimensional circulation in the Muggia bay, where the Trieste

harbor is located (Italy), under a specified forcing wind con-

dition. Fig.(7) reports a satellite image of the area. The bay

is bounded by the coast line on the north, east and south

sides, while on the west side a system of breakwater sepa-

rates the bay from the rest of the gulf. The dimensions of the

domain are 5 km × 4 km in the horizontal plane, while the

maximum depth is of 21 m. The discretization involves, on

the horizontal plane, 285×257 grid points along x and z axis,

and 25 grid points along the y axis. The resulting cells are

sheet-shaped, with typical dimensions of 10 m×10 m×0.5 m.

Fig.(8a) shows the horizontal perimeter of the grid, and in

Fig.(8b) the shape of the bottom reproducing the actual

bathymetry is depicted. The coast line and the upper part

of the bathymetry are treated using the IBM.

The boundary conditions are set in the following way:

on the solid walls we use a wall function, on the sea sur-

face a south-west forcing wind is imposed with intensity of

U10 = 4 m/s. This is a typical value for wind in this ge-

ographical area. On the remaining, open, boundaries an

Orlanski condition is enforced. As in the previous case the

Coriolis effects are taken into account.

Figure 9a shows the contour plot of the horizontal ve-

locity component u 2 m below the surface. The order of

magnitude is of about 0.1 m/s, which is a mean value for

the Trieste gulf’s currents. Intense currents in the bay are

observed in open areas, that is, far from the coast line and

breakwater, where wind fetch has higher values. The main

inward current is found in the Southern Canal. Less in-

tense fluxes are observed between the different breakwaters,

in the surface and bottom layers respectively. We noted the

presence of two main types of recirculation motions. The

first one is generated by the surface leading current which,

colliding with the coast-line on the N-E side, deviates into

deeper layers and flows in the opposite direction. The in-

verted bottom-layers circulation has an intensity of an order

of magnitude smaller than the superficial one, which is typ-

ical for this geographical area. Figure 9b shows the contour

plot of u, 6 m below the surface. It can be noticed the small

value of the mean velocity (compared to the surface current)

and the presence of the bottom recirculation currents. The

second ones are down− and up−welling phenomena due to

the surface wind action, which produces small scale eddies

between the surface and the bottom. These are due to the

presence of obstacles in quite deep water, such as the area

of the commercial port, or near the jetties. The down and

up − welling structures can be noted as they have opposite

flow directions.

Figures 10a,10b show the horizontal component of eddy

viscosity νt at the surface level and 3 m below the free

surface. In the free-surface layer the highest turbulent dis-

sipation is observed to occur close to the presence of the

physical obstacles such as break- water, coast-line, jetties.

In the deep layers turbulent dissipation denotes the pres-

ence of middle-high currents and recirculations.

Overall the analysis shows that under the wind forcing

herein investigated a quite poor exchange of water in the

bay is observed, because of its own conformation and the

presence of break waters. Different wind conditions are at

the present under analysis, in order to have a more complete

description of the bay’s water dynamics.
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Figure 1: Case 1 Bathymetry, grid edges and physical do-

main for Tevere river area.

a) Y X

Z

b)

Figure 2: Case 1 a) Horizontal plane for a coarse grid. b)

Bottom of the grid from bathymetry.

a)

b)

Figure 3: Case 1 a) Contour of the horizontal velocity com-

ponent u on an horizontal plane at 1 m below the surface.

b) Contour of the vertical velocity component v on an hori-

zontal plane at 1 m below the surface.

a)

b)

Figure 4: Case 1 Plot of the eddy viscosity νt at 1 m below

the surface: a) horizontal component, b) vertical component.
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a)

b)

Figure 5: Case 1 a) Ratio ρ′/ρ0 at 5 m from the sea surface.

b) Ratio ρ′/ρ at the sea surface.

Figure 6: Case 1 A satellite image of Tevere’s mouth.

Figure 7: Case 2 Physical domain of the Trieste harbor.

a) b)

Figure 8: Case 2 a) Horizontal plan of the computational

grid. b) Bottom of the grid following the bathymetry.

a)

b)

Figure 9: Case 2 a) Contour of the horizontal velocity com-

ponent u on an horizontal plane, at a depth of 2 m below

the sea surface. b) Contour of the horizontal velocity com-

ponent u on an horizontal plane, at a depth of 6 m below

the sea surface.

a)

b)

Figure 10: Case 2 a) Plot of the horizontal eddy viscosity

νt,h : a) surface level, b) depth of 3 m below the surface.
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