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Linné Flow Centre,
KTH Mechanics

SE-100 44 Stockholm, Sweden

ABSTRACT

Numerical simulations are used to study vertical disper-

sion of fluid particles in homogeneous turbulent flows with a

stable stratification (Brethouwer and Lindborg, 2009). The

results of direct numerical simulations are in good agreement

with the relation for the long time fluid particle dispersion,

〈δz2〉 = 2εP t/N2, derived by Lindborg and Brethouwer

(2008), though with a small dependence on the buoyancy

Reynolds number. Here, 〈δz2〉 is the mean square verti-

cal particle displacement, εP is the dissipation of potential

energy, t is time and N is the Brunt-Väisälä frequency. Sim-

ulations with hyperviscosicity are performed to verify the

relation 〈δz2〉 = (1 + πCPL)2εP t/N2 for N−1 � t � T ,

where N is the Brunt-Väisälä frequency and T is the tur-

bulent eddy turnover time. The simulation results approach

the relation for increasing stratification and we find that

CPL is about 3 in strongly stratified fluids. The onset of a

plateau in 〈δz2〉 is observed in the simulations at t ∼ T .

INTRODUCTION

Mixing and dispersion in stratified flows is a topic of ut-

most importance for environmental and climate processes.

Several researchers have examined the vertical dispersion of

fluid particles in stratified flows in order to obtain a better

understanding of mixing in geophysical flows. Pearson et al.

(1983) used a Langevin model to analyze the mean square

of vertical fluid particle displacements 〈δz2〉 in stationary

stratified flows. They predict that 〈δz2〉 reaches a plateau

with 〈δz2〉 ∼ 〈w2〉/N2 at t ∼ N−1, where w is the vertical

velocity fluctuation and N is the Brunt-Väisälä frequency.

Furthermore, they predict a linear growth, 〈δz2〉 ∼ 〈w2〉t/N ,

at long times when molecular diffusion alters the particle

density. Kaneda and Ishida (2000) applied rapid distor-

tion theory to study vertical dispersion in decaying strat-

ified turbulence. They predict a plateau for 〈δz2〉 at long

times which is consistent with direct numerical simulations

(DNS). Nicolleau and Vassilicos (2000), Nicolleau and Yu

(2007) and Nicolleau, Yu and Vassilicos (2008) observed

〈δz2〉 ∼ EK/N2 (EK is mean kinetic energy) after long

times in stationary stratified turbulence using kinematic

simulations (KS). The influence of the changing particle den-

sity on the dispersion of the particles was neglected because

molecular diffusion is not included in KS. Liechtenstein,

Godeferd and Cambon (2005, 2006) used a linear model,

KS and DNS to study dispersion in rotating and strati-

fied turbulence. For decaying turbulence they observed that

〈δz2〉 ∼ 〈w2〉/N2 after some time. A similar plateau was ob-

served in DNS of decaying stratified turbulence by Kimura

and Herring (1996). Venayagamoorthy and Stretch (2006)

examined the role of the changing particle density on ver-

tical dispersion. They observed that after about one eddy

turnover time diabatic dispersion dominated in their DNS

of decaying stratified turbulence, Van Aartrijk, Clercx and

Winters (2008) were the first to study particle dispersion

in DNS of stationary stratified turbulence. They observed

a plateau with 〈δz2〉 ∼ 〈w2〉/N2 at t ∼ N−1. However,

some of the DNS showed a linear growth with 〈δz2〉 ∼ t at

long times caused by density changes of fluid particles by

molecular diffusion.

RELATIONS FOR THE VERTICAL DISPERSION

In a recent paper we have analysed and derived rela-

tions for the vertical dispersion of fluid particles in stratified

turbulence (Lindborg and Brethouwer, 2008). Assuming a

statistically stationary and stratified homogeneous turbulent

flow governed by the Boussinesq equations and integrating

the governing equations along a fluid particle trajectory, we

derived

〈δz2〉 =
2

N2

h
εP t

“
1 − O(R−1/2)

”
+ 2EP

i
(1)

for t � EP /εP . Here, εP is the dissipation of potential

energy, EP is the potential energy, R = εK/νN2 is the buoy-

ancy Reynolds number, εK is the turbulent kinetic energy

dissipation and ν is the viscosity. One term has be neglected

using scaling arguments. Adiabtic displacements of fluid

particles leads to the last term in (1) and gives a finite con-

tribution to long time dispersion because it is constrained by

the available energy. Changes of the density of fluid particles

by molecular diffusion gives also a contribution to vertical

dispersion. This diabatic dispersion contribution is repre-

sented by the first term on the right-hand-side of (1) and

leads to 〈δz2〉 ∼ t for t → ∞. In geophysical flows generally

R � 1 and consequently the O(R−1/2)-term in (1) can be

neglected. However, in laboratory experiments or numeri-

cal simulations this term can give a significant contribution

since R is then not always very large. Relation (1) is ex-

pected to be valid when t � T where T is an eddy turnover

time.

Strongly stratified turbulence with a high Reynolds num-

ber has an anisotropic inertial range at scales larger than the

Ozmidov length scale (Brethouwer et al., 2007; Lindborg and

Brethouwer, 2007). Assuming such an inertial range, we de-

rived

〈δz2〉 =
2

N2
εP t

h
1 + πCPL − O(R−1/2)

i
, (2)

for N−1 � t � EP /εP . Using documented observa-

tions, Lindborg and Brethouwer (2008) estimated that the

constant CPL ≈ 3. The adiabatic dispersion, 〈δz2〉 =

2πCPLεP t/N2, gives then the dominant contribution to dis-

persion in this period.

More background on the analysis and relations for verti-

cal dispersion in decaying stratified turbulence can be found

in Lindborg and Brethouwer (2008).
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NUMERICAL SIMULATIONS

The aim of this study is to test relations (1) and (2)

for the vertical dispersion of fluid particles by numerical

simulations. We have carried out a series of DNS of homo-

geneous stratified turbulence. In the DNS, a pseudospectral

approach with triple periodic boundary conditions is ap-

plied to solve the Boussinesq equations. Horizontal vortical

modes are forced at horizontal wave numbers kh � 3. to

obtain statistically stationary turbulence. Since the flow is

highly anisotropic in strongly stratified flows, we follow the

approach taken by Brethouwer et al. (2007) and use com-

putational domains stretched in the horizontal directions.

In all DNS kmaxη ≈ 1, where kmax is the largest resolved

wave number and η is the Kolmogorov length scale. Simula-

tions with hyperviscosity have also been carried out to test

relation (2) in very strongly stratified turbulence. Numeri-

cal and physical parameters of the DNS and hyperviscosity

simulations are presented in table 1 and 2 respectively.

Four sets of simulations are carried out where the buoy-

ancy Reynolds number R is varied between the sets but

is approximately equal for all simulations within each set,

while the Froude number Fh = εK/(NEK), where EK is

the mean turbulent kinetic energy, is varied. The turbulent

Reynolds number is defined as Re = E2
K

/(νεK) = RF−2
h

.

The Prandtl number, Pr = ν/κ = 0.7 in all these simula-

tions. The four sets are designated A, B, C and D. In the

hyperviscosity simulations Δz/lO � 7 as in Lindborg and

Brethouwer (2007), where lO = ε
1/2
K

/N3/2 is the Ozmidov

length scale and Δz the vertical grid spacing.

When the flow is statistically stationary, we track 12000

up to 96000 particles with a random initial distribution in

the simulations. To obtain the particle velocity up at the

particle position xp, we employ an interpolation scheme.

More details on the numerical approach and forcing can be

found in Brethouwer and Lindborg (2009) and Lindborg and

Brethouwer (2007).

Table 1: Numerical and physical parameters of the DNS.

Lh/Lv is the aspect ratio of the horizontal to vertical domain

size and Nh, Nv are the number of nodes in the horizontal

and vertical direction, respectively.

run Re Fh R Lh

Lv
Nh × Nv

A1 1100 0.03 0.9 2.0 128 × 80

A2 2100 0.02 0.9 3.3 256 × 96

A3 6300 0.01 0.9 5.0 512 × 128

B1 1000 0.1 9.3 2.0 128 × 80

B2 2500 0.06 9.3 3.3 256 × 96

B3 5500 0.04 9.5 5.0 512 × 128

B4 14000 0.03 9.9 6.0 1024 × 256

C 8300 0.07 38 1.0 512 × 512

D1 1300 2.2 6200 1.0 128 × 128

D2 2400 1.6 6200 1.0 256 × 256

D3 8900 0.8 5900 1.0 512 × 512

Table 2: Numerical and physical parameters of the hyper-

viscosity simulations.

run Fh
Lh
Lv

Nh × Nv

H1 0.0014 64 512 × 128

H2 0.0008 72 768 × 256

H3 0.0005 64 1024 × 512

(a)

(b)

Figure 1: Snapshots of the buoyancy field in a vertical plane

in run B2 (a) and D2 (b).

RESULTS

Figures 1(a) and (b) show snapshots of the buoyancy

field of runs B2 and D2, respectively. We can see the typi-

cal anisotropic structure in run B2 with strong stratification

whereas run D2 with a weak stratification is much more

isotropic.

If R � 1 the relations (1) and (2) can be written as

〈δz2〉∗ = 1 +
1

2
t∗ , t∗ � 1 , (3)

〈δz2〉∗ =
1

2
t∗ (1 + πCPL) , Fh � t∗ � 1 . (4)

Here, 〈δz2〉∗ = 〈δz2〉N2/4EP and t∗ = t/T are the nondi-

mensional mean square of the vertical particle displacements

and time respectively. The eddy turnover time is defined by

T = EP /εP .

Figure 2 shows the time development of 〈δz2〉∗ in the

DNS together with relations (3) and (4). DNS with a sim-

ilar value of R are grouped in the same plot. The initial

period shows ballistic dispersion with 〈δz2〉 ∼ t2. There-

after, the growth of 〈δz2〉 slows down. The evolution of

〈δz2〉∗ should become independent of Fh when R � 1 and

Fh � 1 according to our analysis. However, the curves in

figure 2(a) still show a clear dependence on Fh for t∗ < 1.

The mean square displacement, 〈δz2〉∗, moves closer to the

straight line representing (4) as Fh decreases, but no linear

range is visible. We must conclude that we have to per-

form simulations with considerably lower Fh to test relation

(4). We also see the onset of a plateau at t∗ ∼ 1 in figure

2(a), as expected. Such a plateau has also been observed by

van Aartrijk et al. (2008), and indicates that the adiabatic

mean square displacement has approached its upper bound

〈δz2〉 = 4EP /N2, i.e. 〈δz2〉∗ = 1. The adiabatic disper-

sion regime or the onset of a plateau cannot be seen in DNS

results with Fh � 1 displayed in figure 2(b).

After the slow down of vertical dispersion seen in figure

2(a), 〈δz2〉∗ grows faster again and approaches the asymp-
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Figure 2: Time development of 〈δz2〉∗ vs. t∗. The dashed

and dotted lines show relations (3) and (4) respectively, and

the solid lines DNS results. The arrow indicates the direction

of decreasing Fh or increasing Re. (a) B-runs (R � 9) and

(b) D-runs (R � 6000).

totic diabatic dispersion limit (3) with 〈δz2〉∗ ∼ t∗. No-

ticeable is that the asymptotic diabatic dispersion limit is

seen in DNS with strong as well as weak stratification. Fur-

thermore, the plots show the collapse of 〈δz2〉∗ for t∗ > 1

in DNS with approximately equal R. The relation (1) pre-

dicts that 〈δz2〉∗ → t∗/2 for long times, as R is increased.

We see that the simulation results are consistent with this

prediction. Note that the linear growth at late times only

can be observed in stationary flows. In decaying stratified

turbulence, 〈δz2〉 goes to a constant as observed in many

DNS (Kimura and Herring, 1996; Kaneda and Ishida, 2000;

Venayagamoorthy and Stretch, 2006).

When Re is sufficiently high we can expect molecular

diffusivity to have a small influence on the dispersion of

particles (Venayagamoorthy and Stretch, 2006). We have

carried three DNS with approximately the same Fh and R

but Pr varying from 0.7 to 11.2, see Brethouwer and Lind-

borg (2009). The influence of Pr appeared to be relatively

small if R � 1, which illustrates the turbulent nature of

the diabatic dispersion. In contrast, diabatic dispersion re-

duces strongly for increasing Pr in our DNS when R < 1

and small-scale turbulent mixing is mostly absent. This was

already shown by van Aartrijk et al. (2008).

In figure 3(a) most of the runs are collected. All runs

initially display ballistic dispersion with 〈δz2〉 ≈ 〈w2〉t2.

Pearson et al. (1983) suggested that adiabatic dispersion

should be bounded by 〈δz2〉 � 〈w2〉/N2 and reach this limit

at t � N−1. This behaviour was observed by van Aartrijk

et al. (2008) in their DNS. In our DNS, scaling of 〈δz2〉

and t by 〈w2〉/N2 and N−1 respectively does not lead to

a collapse of the adiabatic dispersion plateau in the many

DNS. The reason why we do not observe this scaling is that

our DNS covers the regime R � 1 while van Aartrijk et al.

(2008) considered the regime R � 1. Figure 3(b) shows the

time development of 〈δz2〉∗ for the same runs. In accor-

dance with (3) the onset of the adiabatic dispersion plateau

appears when 〈δz2〉 � 4EP /N2. However, the range of Fh

1 10 100

0.1

1

10

100

(a)

〈δz2
〉N2

〈w2
〉

tN

0.1 1 10

0.1

1

10 (b)

〈δz2〉∗

t∗

Figure 3: (a) Time development of 〈δz2〉N2/〈w2〉 and (b)

〈δz2〉∗. The solid lines are the results of all A, B and C runs.

The dashed line in (a) indicates 〈δz2〉 ∼ t2.
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0.01
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Figure 4: Time development of 〈δz2〉∗. The straight and

bent thin dashed lines show relations (4) and (3) respec-

tively. In both plots the solid lines show the result of the

hyperviscosity simulations. The arrow indicates the direc-

tion of decreasing Fh.

is too limited to firmly determine whether the onset appears

when t ∼ EP /εP (t∗ ∼ 1) or when t ∝ N−1. Nevertheless,

it seems that the DNS data are in better agreement with

Lindborg and Brethouwer’s suggestion. Venayagamoorthy

and Stretch (2006) also found that T is the relevant disper-

sion time scale.

Since the DNS do not reveal a clear inertial stratified tur-

bulence range, we have carried out additional hyperviscosity

simulations. Stratified turbulence features in hyperviscosity

simulations, having a well defined inertial range, have ex-

tensively been examined by Lindborg (2006), Lindborg and

Brethouwer (2007) and Brethouwer and Lindborg (2008).

Figure 4 shows the time development of 〈δz2〉∗ in the hy-

perviscosity simulations together with relations (3) and (4).

For increasing stratification, 〈δz2〉 moves closer to expres-

sion (4) for the adiabatic dispersion in the inertial range of

stratified turbulence with CPL = 3 for N−1 � t � T , but

there is no extended range where it matches the relation.

We can only speculate that it may require very extended in-

ertial ranges as in geophysical flows to observe the behaviour

expressed by (4).
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CONCLUSIONS

We have used DNS and numerical simulations with

hyperviscosity to examine vertical fluid particle disper-

sion in stationary stratified homogeneous turbulent flows

(Brethouwer and Lindborg, 2009). The DNS are in good

agreement with relation (1) for the mean square of the

vertical fluid displacements 〈δz2〉 derived by Lindborg and

Brethouwer (2008). For increasing stratification the adia-

batic dispersion contribution moves closer to Lindborg and

Brethouwer’s suggestion 2πCPLεP t/N2 with CPL ∼ 3 for

N−1 � t � T , according to the simulations with hyper-

viscosity. However, the growth of 〈δz2〉 is somewhat slower

than linear even in the simulation with the strongest strati-

fication. At about t ≈ T we see the onset of a plateau since

the adiabatic dispersion reaches its upper bound 4EP /N2.

In all DNS, spanning a quite extended range of Froude and

Reynolds numbers, 〈δz2〉 approaches 2εP t/N2 in the long

time limit. This linear growth of the vertical mean square

displacement of fluid particles suggests that the vertical eddy

diffusivity of stratified turbulence can be calculated as

K
E

=
1

2

d

dt
〈δz2〉 =

εP

N2
(5)

in the long time limit. The statistical mechanical argument

which is the basis for the expression (5) suggests that this

expression is the eddy diffusivity for any scalar which is fol-

lowing fluid particles. The expression (5) is equivalent to

the Osborn (1980) expression for the eddy diffusivity of the

buoyancy. However, Osborn’s analysis leads to different ex-

pressions for the eddy diffusivity of different scalars.
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