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ABSTRACT

Direct numerical simulation is used to study the cloud-

top mixing layer. This two-layer system models the mixing

region that forms at stratocumulus tops when the upper

warm and dry air mixes with the lower cloud, and one of

its main features is that buoyancy reversal may appear due

to evaporative cooling under certain conditions. First, the

two-fluid formulation employed in the analysis is discussed,

identifying the limitations of such an approach to handle

the physics of the cloud. The buoyancy reversal instabil-

ity that develops in the two-layer system is then presented,

two-dimensional single-mode simulations showing the non-

linear regime of that instability and suggesting a possible

turbulent regime in the lower layer. Three-dimensional sim-

ulations confirm that turbulent state. This turbulent flow is

described in this paper using visualizations and statistics of

the mixture fraction and the turbulent kinetic energy.

INTRODUCTION

It has been long recognized that cloud effects remain one

of the largest sources of uncertainty in model-based esti-

mates of climate sensitivity, and in particular entrainment

rates in stratocumulus-topped mixed layers need urgently

better models (Stevens, 2002) in order to improve predic-

tions obtained with both large-eddy simulations or Reynolds

averaged Navier-Stokes equations.

Stratocumulus-topped boundary layers, and specifically

the possibility of an entrainment instability appearing at the

top of the cloud deck due to buoyancy reversal created by

evaporative cooling when the upper subsiding air mixes with

the lower moist and cooler layer, have received considerable

attention (Randall, 1980; Kuo and Schubert, 1988; Yam-

aguchi and Randall, 2008; Kurowski et al., 2009). Small-

domain analyses via laboratory experiments and numerical

simulations have been also reported (Shy and Breidenthal,

1990; Siems et al., 1990; Siems and Bretherton, 1992), and

the linear stability analysis showing the buoyancy reversal

instability of the cloud-top mixing layer has been recently

derived (Mellado et al., 2009).

We present in this paper further results from the study of

the shear-free cloud-top mixing layer using direct numerical

simulation (DNS), with emphasis on the three-dimensional

turbulent case. The cloud-top mixing layer is an idealized

configuration defined by two unbounded horizontal layers,

with the upper nonturbulent half-space warmer and unsat-

urated and the lower one, also nonturbulent, cooler and

saturated (condensate laden), gravity acting downwards. It

corresponds to length-scales of the order of 10 m, the typical

size of the zone where turbulent entrainment concentrates

(Caughey et al., 1982). The objective of the work is to gain

understanding of part of the phenomena occurring at the

cloud top, namely, latent heat effects, and ultimately to use

the new results to derive better entrainment models or im-

proved subgrid-scale closures. It needs to be distinguished

from the stratocumulus-topped boundary layer (Lilly, 1968;

Stevens, 2002), in which the finite-size bottom region is tur-

bulent and its size is of the order of 103 m.

FORMULATION

Clouds involve simultaneously several complex physical

phenomena, which makes understanding them a daunting

task, and different simplifications are commonly adopted

to make the problem more tractable (Shaw, 2003). In the

context of cloud tops, a physical model based on a mix-

ture fraction formulation (Bretherton, 1987) has been often

employed and will be also used here. There are two ma-

jor hypothesis underlying this approach. The first main

assumption is that cloud droplets are small enough for a

two-fluid formulation to be appropriate, and, in addition,

small enough for a Brownian diffusion of the liquid phase to

be dominant over the terminal velocity due to the gravity

acceleration and with a diffusivity comparable to the vapor

diffusivity. That is certainly not the case at stratocumu-

lus tops, where the mean droplet diameter is reported to be

about 10 μm, but the simplifications are enormous because

the transport equations for enthalpy and total-water spe-

cific humidity are then simply advection-diffusion equations

in the small-domain, low Mach number case that we con-
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sider. The two-layer configuration allows to introduce then

a mixture fraction χ(x, t) that represents the amount of mass

in the fluid particle that originates from the upper layer, i.e.

χ = 1 represents pure fluid from the upper layer and χ = 0

from the cloud below. Consequently, flow variables from the

upper layer will be denoted by the subscript 1, and subscript

0 will correspond to the lower layer. The relative variations

of density ρ are also small, less than 5%, and therefore the

Boussinesq approximation proves to be valid, which leads to

the system

∂v

∂t
+ ∇·(v ⊗ v) = −∇p + ν∇2

v + bk

∇·v = 0

∂χ

∂t
+ ∇·(vχ) = κ∇2χ

(1)

with the buoyancy defined by

b =
ρ0 − ρ

ρ0
g (2)

In the equations above, p is a modified pressure divided by

the reference density ρ0, the kinematic viscosity is ν, κ is

the scalar diffusivity, g represents the (constant) magnitude

of the gravity acceleration, and k is the unit vector along

the vertical direction Oz.
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Figure 1: Nondimensional buoyancy mixing function for the

cases presented in Table 1. Parameters D, χs and χc corre-

spond to case A3.

The second main hypothesis consists in assuming ther-

modynamic equilibrium, so that the complete thermody-

namic state of the fluid particle can be determined for a

given χ, once a pressure level is prescribed. In particu-

lar, it provides the density and therefore the buoyancy term

by b(x, t) = be(χ(x, t)), which is a nonlinear function due

to the phase transition of the water. For the small den-

sity variations occurring in the problem, it can be shown

(Bretherton, 1987) that the buoyancy function follows very

closely a piecewise-linear profile. Thus, the following map-

ping is used to close (1)

be(χ)

b1
= −

D

χs

χ+

„
1 + D

1 − χs

+
D

χs

«
δs ln

»
exp

„
χ − χs

δs

«
+ 1

–
(3)

This function corresponds to a first-order derivative follow-

ing a hyperbolic tangent between two different levels and

centered at the value χs that indicates saturation conditions.

Table 1: Simulation series: lower layer total-water specific

humidity qt,0 and temperature T0. Buoyancy reversal pa-

rameter D defined by equation 4. Pressure level 940 hPa

and upper layer at 19.1 ◦C and qt,1=1.50 g kg−1.

qt,0 T0 D χs χc

(g kg−1) (◦C)

A0 8.0 10.5 - - -

A1 9.0 10.6 0.031 0.09 0.12

A2 10.0 10.8 0.074 0.22 0.27

A3 12.0 11.3 0.133 0.39 0.46

The parameter b1 = g(ρ0 − ρ1)/ρ0 quantifies the strength

of the stable inversion, and the minimum buoyancy bs is

written in terms of the buoyancy reversal parameter

D =
ρs − ρ0

ρ0 − ρ1
= −

bs

b1
(4)

This mapping be(χ) is shown in figure 1. The interval of

mixture fraction between χ = 0 and the cross-over value

χc = (χs + D)/(1 + D) where the buoyancy is negative

represents a region of buoyancy reversal, in this case due

to evaporative cooling. The curves in that figure corre-

spond to the data shown in table 1. Case A1 is taken from

field measurements in nocturnal marine stratocumulus in the

DYCOMS-II study (Stevens et al., 2003); case A0 does not

have buoyancy reversal, with a linear relation between b and

χ; cases A2 and A3 have stronger buoyancy reversal than

A1 but the same inversion value b1.

This hypothesis of phase equilibrium does equally not

hold in the real atmospheric case. The time-scales associ-

ated with the evaporation of cloud droplets with a diameter

of 10 μm is of the order of several seconds (Shaw, 2003),

which might be comparable to the integral time-scales of the

small-domain system that we are considering, as we will see

later. Larger systems do indeed have longer times, but the

corresponding Kolmogorov scales remain small compared to

evaporation times.

It is worth noting that the cloud-top problem formula-

tion written in terms of the mixture fraction as shown here

is formally similar to the infinitely-fast reacting flow that

develops between two parallel streams, except for the iner-

tial effects in the latter due to the strong density variation

(Peters, 2000; Pantano et al., 2003).

If there is no velocity-scale externally imposed, then di-

mensional analysis shows that b1 and a reference length-scale

L0 can be used to write the general solution as

v(x, t)
√

L0b1
= f(

x

L0
, t

s
b1

L0
; Gr, Pr, χs, D,

a

L0
,

δ

L0
)

χ(x, t) = g(
x

L0
, t

s
b1

L0
; Gr, Pr,χs, D,

a

L0
,

δ

L0
)

(5)

which introduces the reference Grashof number Gr =

L3
0b1/ν2 and the Prandtl number Pr = ν/κ. The parame-

ters a and δ describe the geometry of the initial condition

and they are later explained.

The system of transport equations formed by (1) and

(3) are solved numerically following the incompressible al-

gorithm presented by Wilson et al. (1998). We employ

sixth-order compact schemes for the first- and second-order

spatial derivatives, involving the resolution of tridiagonal lin-

ear systems, and a fourth-order Runge-Kutta scheme for the
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time advancement. The Poisson equation is written using

Fourier decomposition along the horizontal periodic planes

parallel to xOy to reduce it to a sequence of one-dimensional

second-order equations. However, further simplification is

needed because the matrix of each of the resulting linear

systems is full and therefore the exact resolution of them

is computationally too demanding. We substitute the two

first-order finite-difference operators by one second-order fi-

nite difference (Wilson et al., 1998; Cook and Dimotakis,

2001), which leads to a pentadiagonal system. It has been

shown (Mellado et al., 2009) that the associated truncation

error, which introduces a non-zero dilatation, can be small

enough for the study of large-scale statistics using an ade-

quate resolution. The boundary conditions at the top and

the bottom are no-penetration free-slip boundary conditions,

although tests are always performed to assure no influence

of these constraints on the data analyzed.

BUOYANCY REVERSAL INSTABILITY

As explained before, the cloud-top mixing layer is de-

scribed in terms of a dry and warm top layer where χ = 1

and a moist and cold bottom layer where χ = 0. If motion

is absent, both regions mix due to molecular diffusion and

the inversion evolves towards an error function profile

χi(z) =
1

2

h
1 + erf

“ z

2δ

”i
(6)

where δ parameterizes the thickness. This two-layer struc-

ture in the mixture fraction leads to a three-layer structure

in the density, as shown in figure 2, due to the nonlinear

mapping be(χ) shown in figure 1 and expressed in (3). This

configuration is linearly unstable and the associated insta-

bility is the buoyancy reversal instability. In the single-mode

numerical simulations performed to illustrate this instabil-

ity, the system is perturbed by displacing sinusoidally the

central isosurface of χ over a wavelength λ with an ampli-

tude (a/2), so that a characterizes the initial thickness of

the mixing layer. This initial condition can be expressed as

χ(x, 0) = χi(z + ζ) =
1

2

»
1 + erf

„
z + ζ

2δ

«–
(7)

and ζ(x) = (a/2) cos(2πx/λ). In the cases presented in this

section, the values (a/2)/λ = 0.1 and δ/λ = 0.025 are used.

The wavelength λ is taken as the reference length-scale L0,

and the reference Grashof number in the simulations here

discussed is Gr = 6.4×109. The Prandtl number is Pr = 1.

A uniform grid 512 × 1024 provides enough resolution for

this problem with the numerical scheme described in the

previous section. A common reference for the sixth-order

compact scheme is about 6 points per gradient thickness

δχ(t) =
1

(∂〈χ〉/∂z)max
(8)

which is terms of the the error function profile χi is δχ,0 �

3.54δ. However, we need to resolve here the layer of negative

buoyancy (χ < χc), and that explains the value δ/λ = 0.025

so that χcδχ,0/Δz > 5.

Details about the linear stability analysis, the simulation

and the flow that develops from this initial condition have

been discussed in Mellado et al. (2009). The main char-

acteristic of the system, as already mentioned, is that the

two-layer structure in the mixture fraction (i.e. enthalpy

and total-water specific humidity) corresponds to a three-

layer system in terms of the density, with the central one

heavier than the lower one. Linear stability analysis shows

χ = 1

Oz

χ = 0 ρ0

heavy layer

ρ1

Figure 2: Sketch showing the two-layer vertical structure in

terms of the mixture fraction χ and the associated three-

layer structure in the density, with a middle heavier layer in

case of buoyancy reversal.

that, in the case D � 1 typical of stratocumulus tops, this

configuration has one stable mode of period 2
√

π
p

λ/b1 (or

two dispersive waves with phase velocity
p

λb1/(4π)) and

one unstable mode with a characteristic time-scale D−1/2

times larger than the stable one. The system is then linearly

unstable and the corresponding buoyancy reversal instabil-

ity can lead to a turbulent flow in the lower layer similar to

that generated in Rayleigh-Bénard convection.

Figure 3 presents the negative buoyancy reversal field

(points x for which b(x, t) < 0 are visualized using a gray

scale, white for zero and black for minimum buoyancy bs)

and shows the initial condition, in the form of a single-mode

perturbation, and the state for each case A0-A3 after an

interval of time equal to 4 times the period of the inver-

sion oscillation according to linear theory, 2
√

π
p

λ/b1. The

stable case A0 is represented by be(χ(x, t)) < 0 using the

function be(χ) corresponding to case A1 in order to com-

pare the flow structure of both. The box height shown is

only the lower 3/4 of the domain employed in the simula-

tion, and in case A3 a longer domain in the vertical direction,

a grid 512 × 1280, has been used to avoid the influence of

the lower boundary. All four simulations are out of phase

after the four periods due to nonlinear effects at the interface

that modify the period of oscillation of the standing interfa-

cial gravity wave of the inversion. On top of this oscillation,

a downdraft forms in the cases A1-A3 with buoyancy rever-

sal, and the falling speed of this downdraft increases as the

evaporative cooling is augmented, as expected. This finger

develops a mushroom shape characteristic of the Rayleigh-

Taylor problem for small density differences. This figure

also shows the convoluted mixing pattern that forms due to

buoyancy reversal even for the low values of D characteris-

tic of atmospheric conditions. This result suggests that a

full turbulent flow can develop in the lower layer, not only

a weak recirculation as suggested in the past (Siems et al.,

1990; Siems and Bretherton, 1992).

TURBULENT FLOW

A three-dimensional simulation of the system in case A1

on a cubic domain of size L3
0 has been performed using a

grid size 10243. The initial condition is set as before using

(7), with a thickness δ/L0 = 0.0125. The plane defined by

the isosurface χi = 0.5 (z = 0) of the background inversion

is positioned at 3/4 of the vertical direction; preliminary

simulations (not shown) confirm that there is no influence

from the upper boundary. However, the cross-over value of

the mixture fraction χc can be used to define a possibly more

relevant reference inversion plane at

zi = 2δ erf−1(2χc − 1) (9)

where erf−1 indicates the inverse error function. This iso-
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Initial condition A0 A1 A2 A3

Figure 3: Negative buoyancy field after four periods 2
√

π
p

λ/b1 of the linearly stable mode starting from the single-mode initial

condition (left figure). The reference Grashof number is Gr = 6.4 × 109.

surface partitions the system into positively (χ > χc) and

negatively (χ < χc) buoyant mixtures (see figure 1). For the

current simulation, zi/L0 = −0.02. The initial condition is

further prescribed by specifying a random broadband ver-

tical displacement ζ(x, y) of the central interface χ = 0.5.

The power spectral density of ζ corresponds to a Gaussian

function centered at 1/λ = 1.5/δχ,0 and with a standard

deviation equal to 1/(6λ), so that there is practically no en-

ergy for spatial frequencies below 1/(2λ). The phase of ζ

is random. The root-mean-square (r.m.s.) of this function

is ζrms/λ = 0.15; in this turbulent case, the parameter a is

defined as a = 2ζrms. This set-up follows the initializations

used in simulations of Rayleigh-Taylor turbulence (Cook and

Dimotakis, 2001; Mellado et al., 2005). Note that these

values lead to ratios δ/λ significantly larger than those pre-

scribed in the single-mode studies, but the aim in this initial

condition is to promote the development of a fully turbulent

state, and a rapid and strong multimode interaction is there-

fore preferable to a detailed representation of the transition

between the linear and the non-linear regimes. The same

Grashof number Gr = 6.4 × 109 as in the two-dimensional

cases is employed and Pr = 1.

In this section, the nondimensional results are presented

in terms of L0 and bs instead of b1, because it is the for-

mer quantity that better characterizes the turbulent fields

in the lower layer. Thus, statistics constructed using av-

erages along horizontal planes will depend on the vertical

distance z/L0 and on the nondimensional time

τ = t
p

|bs|/L0 (10)

Figure 4 depicts qualitatively the evolution of the turbu-

lent flow by means of the negative buoyancy field at three

times, using again a gray scale ranging from zero buoyancy

(white) to bs (black). Several points should be appreciated.

First, a turbulent flow seems to develop in the lower layer, in

the sense that there is a three-dimensional vorticity fluctua-

tion (inferred from the fluctuation of b shown in that figure

and confirmed by vorticity statistics not shown here) over

a broadband range of scales. The forcing is to be found in

the vertical downdrafts of cool fluid that develop between

the domes observed at the inversion, which suffer then shear

instabilities and transfer turbulent energy to the horizon-

tal motion. Last, the inversion remains relatively thin and

its mean position is not significantly displaced in the verti-

cal direction. This flow configuration is very reminiscent of

the penetrative convection that forms when a stable strat-

ification over a horizontal boundary is heated from below

(Fernando and Little, 1990), here the system being upside-

down.

Quantitatively, the evolution of the flow is described first

in terms of the mixture fraction, presenting mean and fluc-

tuation profiles in figures 5 and 6, respectively. The mean

profile 〈χ〉 shows the penetration of the mixing region into

the neutrally-stable lower layer. The mean values of mix-

ture fraction inside the mixing region are small compared to

the inversion value, even smaller than the cross-over value

χc = 0.12, and the evolution is only clearly observed in the

inset of figure 5. On the other hand, the inversion remains

located at about the initial position z = 0, with a small

thickening towards the upper layer consistent with the con-

servation property of the mixture fraction, and seemingly

dominated by diffusion processes.

-0.6 -0.4 -0.2 0.0 0.2
z/L0

0.0

0.2

0.4

0.6

0.8

〈χ
〉

-0.5 -0.4 -0.3 -0.2 -0.1 0.00.00

0.01

0.02

0.03

0.04

0.05

Figure 5: Mean profile of mixture fraction for case A1 at

different times: τ1 = 4.03, solid; τ2 = 4.70, dashed; τ3 =

5.40, dot-dashed. The cross-over mixture fraction separating

negatively from positively buoyant mixtures is χc = 0.12.

The fluctuation of the mixture fraction is illustrated by

figure 6, where the profile of the r.m.s. is plotted. There

are at least two regions to be distinguished. First, there

is a broad zone below z/L0 � −0.1, corresponding to the

turbulent region, with fluctuation values about 1%; com-

pared with χc, the value that seems to cap the turbulent

motion at the inversion, that turbulence intensity is of the

order of 10%. Second, there is a strong peak of χrms at

about z/L0 � −0.02, which does not vary strongly in time
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Figure 4: Evolution (left to right) of the negative buoyancy field for case A1 starting from broadband initial conditions. Vertical

planes at times τ1 = t
p

L0/bs = 4.03, τ2 = 4.70 and τ3 = 5.40 are shown. The reference Grashof number is Gr = 6.4 × 109.

and that approximately corresponds to the point of maxi-

mum mean gradient observed in figure 5. The location of

this maximum gradient is not at z = 0 because the prob-

lem is asymmetric, and it is more related to the position of

the reference inversion plane zi introduced before in (9) and

based on the initial background profile and the cross-over

value χc. This inflexion point separates positive curvature

below it, and therefore mean molecular diffusion increasing

〈χ〉, from convexity above it, and therefore mean molecular

diffusion decreasing 〈χ〉. The associated strong maximum in

χrms represents the oscillation of the stable inversion.

-0.6 -0.4 -0.2 0.0 0.2
z/L0

0.00

0.01

0.02

0.03

0.04

0.05

χ rm
s

Figure 6: Mixture fraction fluctuation at different times.

Same legend as in figure 5. Vertical line indicates the posi-

tion of the reference inversion plane zi/L0 = −0.02, equa-

tion (9).

In terms of the velocity, the mean is zero due to the

statistical homogeneity along the horizontal planes and the

solenoidal character of the velocity field. The velocity tur-

bulence intensity
√

2k, k being the turbulent kinetic energy

per unit mass, is plotted in figure 7, nondimensionalized with

the potential energy per unit mass |bs|L0 related to the sat-

uration buoyancy bs and the length-scale L0. The turbulent

kinetic energy continuously increases, due to the positive

turbulent buoyancy flux (not shown) generated by the down-

drafts, and this growth is in magnitude as well as in broad-

ening towards the lower layer. The flow is anisotropic, with

a ratio between the vertical velocity fluctuation to the hori-

zontal one about 1.3 in the middle of the turbulent zone. The

Taylor-scale Reynolds number is Reλ = w′λz/ν � 65, where

w′ is the vertical velocity r.m.s. and the Taylor microscale is

λz = w′/
p

〈(∂w′/∂z)2〉. The turbulent Richardson number

is large, Rit = b1k1/2/ε � 300, with ε the average turbulent

dissipation rate, which explains why the turbulent zone is

constrained by the inversion on top, as observed again in

figure 7.

-0.6 -0.4 -0.2 0.0 0.2
z/L0

0.00

0.05

0.10

0.15

[ 2
k 

/(|
b s|L

0) ]
1/

2

Figure 7: Turbulent kinetic energy at different times. Same

legend as in figure 6.

These results are now briefly discussed in terms of di-

mensional quantities and in the context of stratocumulus

tops. The reference case A1 from the DYCOMS-II field

measurements corresponds to an inversion buoyancy b1 =

0.25 m s−2, and therefore a minimum reversal buoyancy

(at saturation) bs = −0.031b1 = −7.75 × 10−3 m s−2.

This value of b1 implies that the reference Grashof number

Gr = 6.4×109 used in this work corresponds to atmospheric

conditions for a reference length-scale L0 of about 2 m, cal-

culated using a kinematic viscosity of 1.5×10−5 m2 s−1. The

corresponding reference time-scale
p

L0/|bs| is about 16 s,

and that associated with the restoring force of the inversion

is
p

L0/b1 � 3 s, much shorter. As mentioned before, these

values are comparable to the times-scales of droplet evap-

oration, and therefore the assumption of thermodynamic

equilibrium is not fulfilled. (One could hypothesize that fi-

nite rate effects would make the flow to develop slower.)

The reference velocity is
p

|bs|L0 � 12 cm s−1. Hence,

the characteristic fluctuation velocity
√

2k calculated from

figure 7 is about 2 cm s−1. This velocity is more than
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one order of magnitude smaller than those measured by

Caughey et al. (1982), who report velocity fluctuations of

1 m s−1 right below the cloud top. This is consistent with

the thought that the buoyancy reversal cannot compete with

the stronger turbulent state imposed by the large-scale mo-

tion inside the whole planetary boundary layer (Yamaguchi

and Randall, 2008). At the same time, the results here pre-

sented show that turbulent entrainment of upper layer fluid

only due to buoyancy reversal effects is not predominant be-

cause the corresponding Richardson numbers are too large

for the turbulent motion in the lower layer to break through

the inversion, and thus they suggest that buoyancy reversal

alone cannot be responsible for the cloud deck break-up.

In summary, the three-dimensional simulations reported

in this section confirm the scenario suggested by the sta-

bility analysis and the single-mode simulations of Mellado

et al. (2009) and show that a turbulent flow can develop

due to the buoyancy reversal instability, even for the low

values D � 0.05 characteristic of the atmospheric condi-

tions and for the small domains considered in this DNS, of

the order of 2 m. The turbulent mixing promoted by the

buoyancy reversal is mainly restricted to the lower layer, it

is capped and constrained by the relatively strong inversion

and there is no intense engulfment of the upper laminar layer

into the mixing region, the mixing zone broadens predomi-

nantly downwards. The required thickening of the vertical

profile 〈χ〉 upwards due to the conservation of χ seems to

occur mainly in a laminar diffusion fashion. Hence, it seems

more reasonable to consider the possible effects of buoyancy

reversal as a modification to an already existing turbulent

entrainment process at the cloud top caused by the turbulent

state of the boundary layer below or by local mean shear.

The application of the results obtained from this simplified

analysis to the real situation found in stratocumulus tops

is limited, because the presence of a continuous external

forcing due to the turbulent state of the lower layer is not

considered here (in addition, of course, to the departures

from the two-fluid and equilibrium hypotheses).

CONCLUSIONS

The buoyancy reversal instability occurring in the cloud-

top mixing layer due to evaporative cooling has being in-

troduced and the subsequent flow described using direct

numerical simulation. A physical model based on a mixture

fraction has been used as in previous works, investigating the

role of latent heat effects at the cloud top. Single-mode cases

have illustrated the non-linear evolution of the instability,

previously identified by linear analysis. A three-dimensional

simulation using a broadband random initial perturbation

of the inversion has shown the turbulent state that can de-

velop even for the cases of weak buoyancy reversal typical of

atmospheric conditions at the stratocumulus clouds. This

turbulent zone grows with time into the lower layer, the

turbulent kinetic energy continuously increasing, but it is

strongly capped by the stable inversion. More detailed char-

acterization of the turbulent state, possibly in terms of a

self-similar evolution, is currently under investigation.

Partial financial support for this work was provided by

the Deutsche Forschungsgemeinschaft within the SPP 1276

Metström program.

REFERENCES

Bretherton, C. S., 1987. “A theory for nonprecipitating

moist convection between two parallel plates. Part I: Thermo-

dynamics and linear solutions.” J. Atmos. Sci., 44:1809–1827.

Caughey, S. J., Crease, B. A., and Roach, W. T., 1982. “A

field study of nocturnal stratocumulus II Turbulence structure

and entrainment”. Q. J. Roy. Meteorol. Soc., 108:125–144.

Cook, A. W. and Dimotakis, P. E., 2001. “Transition stages

of Rayleigh-Taylor instability between miscible fluids”. J.

Fluid Mech., 443:69–99.

Fernando, H. J. S. and Little, L. J., 1990. “Molecular-

diffusive effects in penetrative convection”. Phys. Fluids A,

2(9):1592–1596.

Kuo, H. and Schubert, W. H., 1988. “Stability of cloud-

topped boundary layers”. Q. J. Roy. Meteorol. Soc., 114:887–

916.

Kurowski, M. J., Malinowski, S. P., and Grabowski, W.,

2009. “A numerical investigation of entrainment and transport

within a stratocumulus-topped boundary layer”. Q. J. Roy.

Meteorol. Soc., 135:77–92.

Lilly, D. K., 1968. “Models of cloud-topped mixed layers

under strong inversion”. Q. J. Roy. Meteorol. Soc., 94:292–

309.

Mellado, J. P., Sarkar, S., and Zhou, Y., 2005. “Large-eddy

simulation of Rayleigh-Taylor turbulence with compressible

miscible fluids”. Phys. Fluids, 17:076101.

Mellado, J. P., Stevens, B., Schmidt, H., and Peters, N.,

2009. “Buoyancy reversal in cloud-top mixing layers”. Q. J.

Roy. Meteorol. Soc.

Pantano, C., Sarkar, S., and Williams, F. A., 2003. “Mixing

of a conserved scalar in a turbulent reacting shear layer”. J.

Fluid Mech., 481:291–328.

Peters, N., 2000. Turbulent combustion. Cambridge Univer-

sity Press.

Randall, D. A., 1980. “Conditional instability of the first

kind upside-down”. J. Atmos. Sci., 37:125–130.

Shaw, R. A., 2003. “Particle-turbulence interactions in at-

mospheric clouds”. Annu. Rev. Fluid Mech., 35:183–227.

Shy, S. S. and Breidenthal, R. E., 1990. “Laboratory ex-

periments on the cloud-top entrainment instability”. J. Fluid

Mech., 214:1–15.

Siems, S. T. and Bretherton, C. S., 1992. “A numerical

investigation of cloud-top entrainment instability and related

experiments”. Q. J. Roy. Meteorol. Soc., 118:787–818.

Siems, S. T., Bretherton, C. S., Baker, M. B., Shy, S., and

Breidenthal, R. E., 1990. “Buoyancy reversal and cloud-top

entrainment instability”. Q. J. Roy. Meteorol. Soc., 116:705–

739.

Stevens, B., 2002. “Entrainment in Stratocumulus-topped

mixed layers”. Q. J. Roy. Meteorol. Soc., 128:2663–2690.

Stevens, B., D-H-Lenschow, Faloona, I., Moeng, C. H., Lilly,

D. K., Blomquist, B., Vali, G., Bandy, A., Campos, T., Ger-

ber, H., Haimov, S., Morley, B., and Thorton, C., 2003. “On

entrainment rates in nocturnal marine Stratocumulus”. Q. J.

Roy. Meteorol. Soc., 129(595):3469–3493.

Wilson, R. V., Demuren, A. O., and Carpenter, M., 1998.

“Higher-order compact schemes for numerical simulation of in-

compressible flows”. Technical Report CR-1998-206922, NASA

Langley Research Center.

Yamaguchi, T. and Randall, D. A., 2008. “Large-eddy sim-

ulation of evaporatively driven entrainment in cloud-topped

mixed layers”. J. Atmos. Sci., 65:1481–1504.

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

1159

미정댁
메인/컨텐츠




