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ABSTRACT

Direct Numerical Simulations (DNS) are performed to

investigate the behavior of a weakly stratified shear layer in

the presence of a strongly stratified region beneath it. The

stratification in the deep region measured by the Richard-

son number Jd has a value of 0.25. A traditional two-layer

problem with the same bulk Richardson number is also simu-

lated for comparison. Both coherent Kelvin-Helmholtz (KH)

rollers and small-scale turbulence are observed during the

evolution of the shear layer. The momentum thickness is

smaller relative to the two-layer case although the evolution

of the small scales are similar. In the Jd case, internal waves

are excited, initially by KH rollers and later by small-scale

turbulence. Waves generated by turbulence are relatively

weaker with a broader range of frequencies. Integration of

the turbulent kinetic energy budget in time and over the

shear layer thickness shows that the energy flux can be up

to 17% of the turbulent production, 33% of the turbulent

dissipation rate and 75% of the buoyancy flux. These num-

bers illustrate the dynamical importance of internal waves.

The mixing efficiency is found to be the same in both cases

when the flow is in turbulent regime.

MOTIVATION

Stratified shear flow away from boundaries has been the

subject of many studies, employing both experimental and

numerical techniques. Nevertheless, there are only a hand-

ful that study the dynamics of a stratified shear layer in the

presence of an external stratification where internal waves

may be supported. Such a scenario can occur in the natu-

ral environment when the stratification extends continuously

beyond the shear layer, and will be the focus of the current

study. In the present study, we use direct numerical sim-

ulations (DNS) to investigate the properties of turbulence

and mixing of an inhomogeneous stratified shear layer lo-

cated between a weakly stratified upper layer and strongly

stratified lower layer. We constrast the results with those

observed in the typical mixing layer to illustrate differences

and similarities in the following aspects: the evolution of

the large-scale and small-scale structure in the shear layer,

the evolution of the turbulent kinetic energy (TKE) budget

insofar as the effects of internal wave excitation as well as

the efficiency in turbulent mixing.

FORMULATION

Fig. 1 is a schematic of the simulated shear layer between

two layers of fluid moving in opposite directions with a veloc-

ity difference ΔU and a vertical density stratification owing
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Figure 1: Initial mean profiles. Each case has a tempo-

rally evolving shear layer between two streams with velocity

−ΔU/2 and ΔU/2, and initial vorticity thickness, δω,0. The

maximum shear is at z = 0. The two-layer density variation

corresponds to a tangent-hyperbolic profile with J(0) = 0.1.

The other density profile corresponds to a moderate linear

stratification, Js = 0.05, in the shear layer above a bottom

region, z < −2.5δω,0, with uniform stratification that takes

the value Jd = 0.25. The initial value of bulk Richardson

number, Rib,0 = 0.1, is the same for both cases.

to a temperature variation. The flow evolves temporally

with statistics that are homogenous in the streamwise (x)

and spanwise (y) directions. The horizontal velocity varies

continuously in the vertical cross stream direction (z) with

a hyperbolic tangent profile,

〈u〉 = −
ΔU

2
tanh

„
2z

δω,0

«
,

where the initial vorticity thickness is defined by δω,0 =

ΔU/(d 〈u〉 /dz)max. The squared buoyancy frequency is

defined by N2 = − (g/ρ0) d 〈ρ〉 /dz and a nondimensional

measure of the stratification is the Richardson number,

J(z) = N(z)2δ2
ω,0/ΔU2. Two types of density profile are

considered. A two-layer density variation, corresponding

to the classical Thorpe problem, is defined with a tangent-

hyperbolic profile obtained by replacing ΔU in the mean

velocity profile with the density change, Δρ. The value of Δρ

is chosen to set J(z = 0) = 0.1. The second type of density

profile corresponds to a weakly stratified shear layer above

a region of deep stratification. The fluid above and inside

the shear layer region is linearly stratified with Richardson

number Js = 0.05. At depth z = −2.5δω,0 the stratification

changes to the value of the Richardson number specified in

the deep region Jd = 0.25.

The initial shear layer vorticity thickness δω,0, the den-

sity jump Δρ0 across twice the initial vorticity thickness,

and the velocity difference ΔU are used for nondimen-
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sionalization. We solve the Navier-Stokes equations under

the Boussinesq approximation with the following nondi-

mensional parameters: Reynolds number Re = ΔUδω,0/ν,

Prandtl number Pr = ν/κ, and bulk Richardson number

Rib,0 = (gΔρ0δω,0) /
`
ρ0ΔU2

´
. Here, ν is the kinematic

viscosity, and κ is the molecular diffusivity. Both simula-

tions are run with Re0 = 1280, Pr = 1 and Rib,0 = 0.1.

The domain size is 51.6δω,0 x 17.2δω,0 x 96.57δω,0 and

the gridpoints in x, y, z directions are 384 x 128 x 512, respec-

tively. The grid is uniform in the streamwise and spanwise

directions with the spacing of 0.134δω,0. In the vertical di-

rection the grid is uniform in the region −7.5 < z < 2.5δω,0

with the spacing of 0.0756δω,0. Outside this region the

grid is mildly stretched with a ratio of 2%. A second-order

finite difference method on a staggered grid is used for spa-

tial derivatives and a third-order low storage Runge-Kutta

method is used for time advancement. The flow is initialized

with low amplitude velocity perturbations. Periodic bound-

ary conditions are used in the x and y directions. Dirichlet

boundary conditions are enforced for horizontal velocities

and pressure while vertical velocity and density have Neu-

mann conditions. A sponge region is employed at the top

(z > 15δω,0) and the bottom (z < −50δω,0) boundaries

to damp out internal waves propagating out of the domain.

Evolution of the shear layer includes formation of KH rollers

and their breakdown into small-scale three-dimensional tur-

bulence. Simulations are continued until most of the fluctua-

tions inside the shear layer is dissipated, roughly at tf = 250

time units. Details of the numerical methods used in this

study can be found in Basak & Sarkar (2006) and Brucker

& Sarkar (2007).

EVOLUTION OF THE SHEAR LAYER

Shear instability, KH roller formation and transition to

three-dimensional small-scale turbulence is typical for the

evolution of the two layer case which has been studied ex-

tensively, e.g. Koop & Browand (1979); Smyth & Moum

(2000a,b). In the Jd case, the shear layer evolves in sim-

ilar manner; nonetheless, the following differences are dis-

tinctive: inhibition of KH rollers pairing, early turbulence

transition, internal wave excitation and significantly smaller

shear layer thickness. In the following text, we elaborate

on these observations with the visualization as well as the

growth of the shear layer.

Fig. 2 gives the instantaneous density field in the verti-

cal plane at y = 8.5δω,0 for the two simulated cases. The

constrast in the evolution of the shear layer large-scale stru-

cutures is eminent in Fig. 2(a) and (b). In the two-layer

case, the KH rollers are larger and pair with one another

while in the Jd case they quickly break down before pair-

ing. The roller at x = 5δω,0 in Fig. 2(a) penetrates as deep

as z = −4δω,0 while the two left-most rollers in Fig. 2(b)

have already transitioned into turbulence. The pairing in-

hibition is due to the stronger stratification that the rollers

experience at the base of the shear layer. In the Jd case,

the rollers have to expend more kinetic energy to lift up the

heavier fluid; both cases have the same initial amount of ki-

netic energy. As heavy fluid below is lifted above the shear

layer into the region with lighter fluid, the lifted fluid carries

significant amount of available potential energy and prefers

to revert toward an energetically stable state leading to the

early breaking of the KH rollers instead of growth through

pairing. It should be noted that Fig. 2(a) corresponds to

t = 110 when the large structure are still prominent while

Fig. 2(b) corresponds to t = 80 when broadband turbulence
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Figure 3: Evolution of the length scales: momentum thick-

ness δθ, buoyancy scale Lb, Ozmidov scale LO and Kol-

mogorov scale η. All scales are normalized with initial

vorticity thickness δω,0. Dashed lines indicate the two-layer

case while solid lines denote the Jd case. The thick arrows

indicate BIV transition.

is already present. Thus, in the Jd case, the inhibition of

roller pairing causes an earlier transition to turbulence.

Instead of expending fluctuation energy to lift up heav-

ier fluid, the shear layer in the Jd case radiates energy into

the stratified interior via internal waves. Evidence of strong

internal wave excitation is clearly shown by the coherent

distortion of isopycnals in Fig. 2(b). The wave field is co-

herent over great depth and has a direct relation to the

KH rollers: the wavelength of the internal waves is equal

to the wavelength of the KH roller. The wave phase lines

slant downward in the negative x-direction indicating that

the wave group velocity is downward and upstream. Such

a relationship resembles internal waves in flows over surface

corrugations. The waves transport significant amount of en-

ergy away from the shear layer. The energetic consequences

upon the evolution of the shear layer will be illustrated in

the next section. Fig. 2(d) shows the shear layer in the Jd

case at late time t = 120 when turbulence dominates. The

isopycnals indicate small-scale turbulence can also excite in-

ternal waves. Waves excited by the turbulent shear layer are

relatively weaker and span a broader spectrum than those

excited by large-scale KH rollers. Compare Fig. 2(d) to (c),

the turbulent shear layer in the Jd case is less energetic than

that in the two-layer case. The turbulent shear layer in

the latter case is thicker and contains finer scales indicat-

ing stronger mixing. The interface between the two fluids is

thinner and much smoother in the Jd case.

To characterize the evolution of the shear layer, we track

the growth of relevant length scales such as integral momen-

tum thickness δθ, buoyancy scale Lb, Ozmidov scale LO and

Kolmogorov scale η. The evolutions of these length scales

are shown in Fig. 3. It is noted that only momentum thick-

ness gives the bulk description of the shear layer, the other

length scales are computed only at center of the shear layer

z = 0 in the following discussion.

The momentum thickness δθ, a typical measure of shear

layer thickness, defined by

δθ = 4

Z zu

zl

 
1

4
−

〈u〉2

ΔU2

!

dz . (1)

Depths zu and zl are upper and lower bounds of the shear

layer where the turbulence production is approximately zero

but the Reynolds shear stress 〈u′w′〉 is not necessarily zero.

The factor of 4 is used so that the initial momentum thick-

ness is equal to the initial vorticity thickness δω,0 used in
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(a) two-layer, t = 110 (b) Jd, t = 80

(c) two-layer, t = 170 (d) Jd, t = 120

Figure 2: Density field in the vertical plane at y = 8.5δω,0. The scale ranges from 99.5% (black) to 100.5% (white) ρ0. The

isopyncals in (b) and (d) show the presence of internal waves in the Jd case while strong stirring is observed in the two-layer

case.

nondimensionalization. Clearly, δθ grows less almost by half

in the Jd case. Although the growth rate of the large-scale

structure is the same in both cases, the growth period is

short in the Jd case supporting the visual observation of

pairing inhibition. At t = 100, δθ begins to become asymp-

totic in the Jd case while it continues to grow in the two-layer

case.

The evolution of the buoyancy length scale, defined by

Lb = w′

rms/N , gives an estimate of the maximum distance

a fluid parcel can be displaced in the vertical direction if all

the kinetic energy is expended for such work. The growth of

Lb in the two-layer case exhibits two local maxima at t = 110

corresponding to the KH rollers of largest size and at t = 140

corresponding to turbulent mixing. Lb in the Jd case peaks

at earlier time and has only one maximum corresponding

to the KH roller. After reaching the maximum value at

t = 80, Lb decreases faster in the Jd case indicating that

the energy-containing range of length scales in the turbulent

shear layer is smaller than the corresponding range in the

two-layer case. When Lb begins to decrease, δθ begins to

become asymptotic indicating insignificant contribution of

fluctuations to the shear layer thickness growth.

While Lb is related to buoyancy effects on the large-scale

fluctuations, the Ozmidov scale LO and Kolmogorov length

scale η are pertinent to turbulent scales. The Ozmidov scale,

defined by LO =
p

ε/N3, gives an estimate of the length

scale below which the flow no longer feels the direct effect of

buoyancy. The Kolmogorov scale, defined by η =
`
ν3/ε

´1/4
,

is the scale at which energy is directly dissipated by molec-

ular viscosity. When η reaches it smallest value, the shear

layer is dominated by small-scale turbulence. Despite the

different times at which they peak, the values of largest LO

and smallest η are the same in both cases indicating the

background stratification in the deep region does not funda-

mentally alter the evolution of the small scales. The time at

which L0 decreases to the value of 10η marks the buoyant-

inertial-viscous (BIV) transition after which the inertial and

buoyancy effects are damped out. As a result, the turbu-

lence begins to decay due to viscosity. The thick arrows

in Fig. 3 denote the BIV transition. The transition occurs

early in the Jd case at t = 120 and later in the two-layer

case at t = 170. The time period of strong turbulence indi-

cated by η > 10 L0 is shorter in the Jd case approximately

80 < t < 120 than in the two-layer case 110 < t < 170.

TURBULENT KINETIC ENERGY

As discussed in the previous section, the presence of

the external stratification affects the evolution of the length

scales inside the shear layer. In this section, we use the

TKE budget to illustrate the difference in the energetics,
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Figure 4: Jd case. (a) Mass flux. (b) Momentum flux.

specifically the influence of internal waves that are allowed

to propagate by the background stratification, external to

the shear layer. It should be noted that TKE refers to the

fluctuating energy due to both turbulence and waves. The

TKE evolution equation is

dK

dt
= P − ε + B −

dT3

dz
. (2)

Here, K = 1/2
˙
u′

i
u′

i

¸
is the TKE, P = −〈u′w′〉 d 〈u〉 /dz

is the production rate, B = − (g/ρ0) 〈ρ′w′〉 is the buoyancy

flux, and ε = (2/Re0)
D
s′
ij

s′
ij

E
is the dissipation rate. s′

ij
is

the fluctuating strain rate and the bracket denotes horizontal

plane average. The transport term dT3/dz is defined with

T3 =
1

2

ˆ˙
w′u′u′

¸
+
˙
w′v′v′

¸
+
˙
w′w′w′

¸˜

−
2

Re0

ˆ˙
u′s′31

¸
+
˙
v′s′32

¸
+
˙
w′s′33

¸˜
+

〈p′w′〉

ρ0
.

The terms in the first bracket represent turbulent transport,

those in the second bracket represent viscous diffusion while

the 〈p′w′〉 /ρ0 term represents the presssure transport, an

indication of energy flux by internal waves.

Before discussing the TKE budget, it is beneficial to

first examine the wave fluxes in the Jd case. Fig. 4 shows

the profiles of mass flux 〈ρ′w′〉 in (a) and momentum flux

〈u′w′〉 in (b) at t = 80 and 120 marking, respectively, the

beginning and the end of the period of strong turbulence.

At t = 80, there is an upward mass flux in the region

−10 < z < −2.5δω,0. This is followed by a downward flux in

that region at t = 120. Integration in time of the mass flux

at z = -5δω,0 indicates that there is almost no net transport,

agreeing with linear theory. Nonetheless, it should be noted

that there is a diffusion of mass due to the stratification dif-

ference between the region above and below the shear layer.

Mass is accumulated in the transition layer at z = -2.5δω,0

where the upper and lower stratification merges. The ac-

cumulation is steady throughout the simulation. Although

the waves do not transport mass, they extract significant

amount of momentum from the shear layer as shown in

Fig. 4(b). The momentum flux 〈u′w′〉 of the KH-excited

waves at t = 80 at z = -2.5δω,0 is as large as 35% of the

Reynolds stress extracted from the mean shear at z = 0.

Waves excited by small-scale turbulence at t = 120 trans-

port significantly less momentum.

Since there are two types of internal waves: KH-excited

and turbulence-excited, we present the TKE budgets at t =

80 and 120 to illustrate the effect of each type of wave upon

the shear layer energetics. Fig. 5(a) shows the budget at t =

80 when the flow is dominated by the large-scale KH rollers.

The production dominates over other terms resulting in an

accumulation of TKE in the shear layer. Energy transport

due to waves is evident in buoyancy flux B, transport dT3/dz

and transient term dK/dt. Integrating the budget from the

top boundary of the domain down to z = -2.5δω,0 yields

the relative efficiency of wave transport. Fig. 5(b) shows

the profiles of wave transport, IW = 〈p′w′〉 /ρ0, normalized

by other terms in the integrated budget. At z = -2.5δω,0,

turbulent transport is insignificant and, therefore, only the

wave transport is plotted. Clearly, a large amount of energy

is extracted from the shear layer by the KH-excited waves.

The extraction can be up to 25% of the production and

100% of the dissipation. The internal wave flux is 160% of

the buoyancy flux; in other words, at this time the shear

layer loses more energy to waves than the amount expended

in local stirring of the density field.

At t = 120, the dissipation dominates the shear layer

as shown in Fig. 6(a). Compare the waves excited by large

structure (below z = -5δω,0) and those excited by small-scale

turbulence (in the region −2.5 < z < −5 δω,0), the latter

are less energetic. The transport efficiency discussed above

is shown in Fig. 6(b). Relative to the integrated production

and dissipation, the energy lost to turbulence-excited waves

is insignificant as shown by the small values at z = -2.5δω,0.

Nevertheless, the wave energy flux at z = -2.5δω,0 is about

50% of the integrated buoyancy flux. The efficiency shown

here agrees well with the values reported in the study of

Taylor & Sarkar (2007) where they investigate the internal

waves generated by wall turbulence. Also clear in Fig. 6(a) is

that the KH-excited waves have low dissipation and exhibit

energy equipartition. Of the amount of energy transported

out of the shear layer by waves dT3/dz, half goes to the

wave kinetic energy dK/dt and half is expended to raise the

fluctuating potential energy B. Such equipartition further

substantiates the linear behavior of the KH-excitied waves.

We now characterize the energetics of the fluctuations

during the entire evolution rather than at the two specific

times of Fig. 5 and 6. Fig. 7 shows the time evolution of

terms in the integrated TKE budget in the Jd case. The

spatial integration is from zmax down to depth z = −5δω,0.

As the vortices roll up, a significant amount of energy is ex-

tracted from mean shear by fluctuations through the turbu-

lent production, some of which is used to increase turbulent

kinetic energy. The buoyancy flux also reaches its maximum

value early since larger eddies have the capability to lift up

heavy fluid. The peak dissipation rate occurs at later time

when the flow turns turbulent. The wave pressure transport

term IW is significant and occurs at a time between the
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Figure 5: Jd case. (a) TKE budget at t = 80. (b) Wave transport efficiency, the absolute ratio of the wave transport,

IW = 〈p′w′〉 /ρ0, to the terms shown in (a) after being spatially integrated. The integration is from zmax down to z = -2.5δω,0.
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Figure 6: Jd case. (a) TKE budget at t = 120. (b) Wave transport efficiency. See caption in Fig. 5.
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Figure 7: Integrated TKE budget in the Jd case. The pro-

duction, dissipation and buoyancy flux are integrated from

zmax to z = -5δω,0, depth at which IW = 〈p′w′〉 /ρ0 is

measured.

occurrence of peak production and peak dissipation.

An overall quantification of the efficiency of internal wave

flux is obtained by integrating the profiles in Fig. 7 from

time t = 0 to late time tf when the turbulent kinetic energy

inside the shear layer vanishes. This procedure is convenient

since the temporal peak values of the various terms in the

TKE balance occur at different times. The partition of the

extracted energy into the various sinks of the TKE balance

is as follows: 53% of the production is dissipated, 23% is

used for stirring the density field, and 17% is transported

away by internal waves. In the two-layer case, 65% of the

extracted energy is dissipated and 28% is used for mixing.

The difference between the two cases shows that internal

waves supported by the external stratification substantially

alters the turbulence energetics inside the shear layer.

MIXING EFFICIENCY

In previous section, we have illustrated that bouyancy

flux, i.e. TKE used for stirring, is less in the Jd case. In this

section we focus the wave role in mixing. We first examine

the evolution of the density variance which is governed by

d

dt

˙
ρ′2
¸

= Pρ − χρ −
dTρ

dz
, (3)

where Pρ = −2 〈ρ′w′〉 d 〈ρ〉 /dz is the production, and χρ =

(2/PrRe0)
D
(∂ρ′/∂xi)

2
E

is the thermal dissipation. The

transport term is

dTρ

dz
=

∂
˙
ρ′2w′

¸

∂z
−

1

PrRe0

∂2
˙
ρ′2
¸

∂z2
.

The terms in the density variance budget for the two-

layer case are shown in Fig. 8(a) at t = 110 and ones forthe

Jd case are shown in Fig. 8(b) at t = 80. These are the times

at which the maximum buoyancy scale Lb occurs. In the

two-layer case, the profiles are restricted in the shear layer

where the dissipation can be as large as the production. The

dissipation in the shear layer is slightly higher in the Jd case.

The production is not symmetric across the shear center z

= 0 as in the two-layer case due to the asymmetry in the

background stratification. The production in the Jd case is

larger in the upper-half of the shear layer where there is no

wave flux. In the region below the shear layer, nearly all the
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(a) two-layer, t = 110 (b) Jd, t = 80
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Figure 8: Budget of density variance
˙
ρ′2
¸

in the two-layer case (a) and Jd case (b).

transient gain is due to the production. The internal wave

is nearly non-dissipative.
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Figure 9: Evolution of mixing efficiency Γd measured at the

shear center z = 0 in both cases. Horizontal dotted line

indicates frequently used value Γd = 0.2.

To evaluate the mixing efficiency, we examine the quan-

tity Γd = ερ/ε which can be measured directly in the ocean

from temperature gradient and velocity shear data. Here, ερ

is defined by

ερ =
1

2

g

ρ0|d 〈ρ〉 /dz|
χρ,

where ερ signifies irreversible loss of turbulent potential en-

ergy to the background density field. Fig. 9 shows the time

evolution of Γd measured at the shear center in both cases.

The mixing efficiency is large when large-scale structure is

present in the shear layer. In the presence of the KH rollers,

the two-layer case has larger Γd due to larger ερ recalling

the viscous dissipation ε is similar in both cases as shown

in the evolution of Kolmogorov scale η in Fig. 3. Although

Γ = Γd = 0.2 is often employed, the value can depend on

the type of flow, the age of the flow in non-stationary exam-

ples, as well as other parameters such as Reynolds number,

Richardson number, and Prandtl number. Here, the value

is about 0.4 in both cases when the flow is highly turbulent.

Γd persists at the asymptotic value for a long time in the

two-layer case while it decreases in the Jd case.

CONCLUSIONS

The direct numerical simulations conducted here show

that the presence of an external stratified region substan-

tially changes the evolution of a stratified shear layer when

compared to the typical situation of shear between two lay-

ers, each with constant density that differs. The Jd case has

significantly smaller momentum thickness δθ with respect to

the two-layer situation although the peak values of buoyancy

scale, Ozmidov scale and Kolmogorov scale are the same in

both cases. The peak values of these scales as well as the

BIV transition occur early such that the flow becomes tur-

bulent at earlier time in the Jd case. The shear layer in

the Jd case excites strong internal waves. Internal waves,

observed here to propagate in the bottom interior region,

do not transport mass away or into the shear layer, consis-

tent with linear wave theory, but are shown to constitute

a significant pathway for energy transfer into the interior.

Integration of the kinetic energy budget over the simulated

time shows that the internal waves are important to the en-

ergetics of the shear layer. The waves can take up to 17% of

the energy extracted from the mean shear. Although signifi-

cant energy is lost due to waves, the mixing efficiency during

the turbulent period is the same for both the Jd case and

the two-layer case.
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