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ABSTRACT

The partially integrated transport modeling (PITM)
method viewed as a continuous approach of hybrid
RANS/LES with seamless coupling is presented. It is used
for deriving a subgrid stress model based on the subgrid
stresses and the dissipation rate developed in a general for-
mulation for free flows as well as bounded flows. This model
is then applied for predicting the well know turbulent chan-
nel flow as well as the periodic flow over a 2d hill which
presents complex physics. As a result, it is found that the
subgrid scale stress model is able to simulate the flows per-
formed on coarse grids with satisfactory agreements with
the reference data for both the velocity and the turbulent
stresses and provides the detail of the flow structures.

INTRODUCTION

Mathematical turbulence modeling methods such as
Reynolds averaged Navier-Stokes methods or large eddy
simulations methods (Schiestel, 2007) have been proposed
independently each other for simulating turbulent flows.
Generally, advanced RANS models such as Reynolds Stress
Models (RSM) (Launder, 1989) appear well suited for
tackling engineering flows encountered in aeronautical
applications (Hanjalic and Jakirlic, 1998; Chaouat, 2005;
Gatski, 2007) whereas subgrid-scale models used in LES
such the dynamic model or structure model (Lesieur et
al., 1996) are rather considered for simulating academic
flows with emphasis on fundamental aspects and structural
aspects. Although these methods are very useful, each of
them has its own specific field of application. Statistical
RANS models are not well suited for studying unsteady
flows subjected to a large range of frequencies that can
interact with the turbulence time scales. On the other
hand, large eddy simulations are not accurate when they
are performed on coarse grids since the subgrid-scale energy
is generally modeled by a simple closure only valid for fine
grained turbulence and require very large computing times.
For these reasons, hybrid RANS/LES zonal methods, capa-
ble of reproducing a RANS-type behavior in the vicinity of
a solid boundary and an LES-type behavior far away from
the wall boundary have been developed in the last decade
(Spalart, 2000; Hanjalic and Kenjeres, 2008). They rely on
two different models, statistical and subgrid models that
are applied in different domains separated by an interface.
Although of practical used for aeronautical applications,
the interface poses matching problems between the RANS
and LES regions.
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Recently, the partially integrated transport model-
ing (PITM) method has been proposed (Chaouat and
Schiestel, 2005; Schiestel and Dejoan, 2005) to overcome
these difficulties. This method allows to perform hybrid
non-zonal RANS/LES simulations on relatively coarse
grids with seamless coupling and bridges two different
levels of description in a consistent way based on the
spectral theoretical PITM methodology (Chaouat and
Schiestel, 2007). Thus, it gains major interest on the
fundamental point of view because it allows some uni-
fying formalism that conciliates RANS and LES approaches.

The paper presents briefly the PITM method and de-
scribes numerical flow simulations using the subgrid scale
stress model developed in a general formulation for free flows
as well as bounded flows (Chaouat and Schiestel, 2009). The
fully developed turbulent channel flow is first simulated on
two different meshes for checking the grid independence of
the solutions as well as the consistency of the subgrid-scale
model when the filter width is changed. The second simula-
tion is concerned with a periodic flow over a 2d hill (Fréhlich
et al.,2005). This test case is of central interest because
of the turbulence mechanisms associated with separation,
recirculation, reattachment, acceleration and wall flow ef-
fects that are difficult to reproduce. Comparisons of the
results are made with highly resolved LES using the dy-
namic Smagorinsky model (Frohlich et al., 2005; Breuer et
al., 2009).

THE FILTERING PROCESS AND TRANSPORT EQUA-
TION SUBFILTER MODEL

The governing equations

Turbulent flow of a viscous incompressible fluid is con-
sidered. In large eddy simulations, the flow variable ¢ is
decomposed into a large scale (or resolved) part ¢ and a
subgrid-scale fluctuating part ¢’. The large scale compo-
nent is defined by the filter function G as

@)= [[[ f[lGAim,x;)@(ma,ms,mg)d%z (1)

where A; is the filter width in the i-direction. Applying
the filtering operation to the continuity and Navier-Stokes
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equations yields the filtered momentum equations
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where u;, p, (75j)sgs, are the velocity vector, the pressure,
and the subgrid-scale stress tensor. The subgrid-scale tensor
(Tij)sgs is defined by the mathematical relation

(7ij)sgs = Wity — Wil 3)
The presence of the turbulent contribution (7;)sgs in equa-
tion (2) indicates the effect of the subgrid scales to the
resolved field. The resolved scale tensor is defined by the
relation

(4)

where (.) denotes the statistical average. So that, the
Reynolds stress tensor 7;; including the small and large scale
fluctuating velocities is computed by the sum of the subgrid
and resolved stresses

(Tij)es = @ity — (u;) (uj)

(5)

whereas the statistical turbulent energy is obtained as the
half-trace of equation (5) leading to k = (ksgs) + (Kies)-

Tij = <(Tij)595> + <(Tij)les>

The subgrid-scale stress model

The subgrid scale stress modeling finds its basic foun-
dation in the spectral space by considering the Fourier
transform of the two-point fluctuating velocity correlation
equations in homogeneous turbulence (Chaouat and Schies-
tel, 2007). The extension to non-homogeneous turbulence
is developed within the framework of the tangent homoge-
neous space. From a physical point of view, it is assumed
in the LES framework that the interaction mechanisms of
the subgrid-scales with the resolved scales of the turbulence
are of the same nature than the interaction mechanisms
involving all the fluctuating scales with the mean flow, allow-
ing transposition of closure hypotheses from RANS to LES.
As a result of the modeling, the subgrid-scale model based
on the transport equations for the subgrid-scale stresses
(7ij)sgs and the subgrid dissipation rate esq4s look formally
like the corresponding RANS/RSM model but the coeffi-
cients used in the model are no longer constants. They are
now some functions of the dimensionless parameter 7. in-
volving the cutoff wave number k. and of the turbulent
length scale L, built using the total turbulent kinetic energy
k = (ksgs)+{kies), the total dissipation rate e = (esgs)+(e<)
composed of the subgrid dissipation rate esgs and the macro-
scale dissipation rate €<

7rk3/2

c = CLE = T T o i 7a
fle = (A1 A2A3)1/3 ¢

(6)
The main feature of the PITM method is that the subgrid-
scale stress model varies now continuously with respect to
the ratio of the turbulent length-scale to the grid-size Le/A.
For the limiting condition when the parameter n. goes to
zero, the subgrid-scale model behaves like a RANS/RSM
model whereas when 7. goes to infinity, the computation
switches to DNS or under resolved DNS if the grid-size
is not enough refined because the energy cannot be main-
tained. In regard with academic LES simulations which
require that the spectral cutoff must be located within the
inertial range, the present subgrid-scale stress model allows
to perform flow simulations on relatively coarse grids since
the cutoff wavenumber can be located almost anywhere in-
side the spectrum. By using the material derivative operator
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D/Dt = 8/8t+1uyd/dzy, the transport equation of the sub-
grid stress tensor can be written in the simple compact form
as

D(7ij)sgs

or = it Wi+ i = (€ij)sgs

)
where the terms appearing in the right-hand side of this
equation are identified as production, redistribution, diffu-
sion and dissipation. The production term P;; is produced
by the interaction between the subgrid stress and the filtered
gradient velocity

ot

ou;
Pij = *(Tik)sgsﬁ - (Tjk)sgs !

e (8)

The redistribution, diffusion and dissipation terms need to
be modeled. Like in RANS modeling, the redistribution
term W;; is decomposed into a slow part \I/}j and a rapid part
\Ilfj The slow term \Il}j characterizes the return to isotropy
due to the action of turbulence on itself whereas the rapid
term \IIZ?]- describes the return to isotropy by action of the
filtered velocity gradient The term W], is modeled assuming
that the usual statistical Reynolds stress models must be re-
covered in the limit of vanishing cutoff wave number k. and
considering also that the small scales return more rapidly to
isotropy than the large scales before cascading into smaller
scales by non-linear interactions

where csgs, is an increasing function of the parameter 7
and the second term \Ilfj is modeled by

2
((Tij)sgs = hsgs 0ij

€sgs

1
Vij = —Cogs1
598

(9)

1
U = —co (Pi‘ - §Pmm 5ij) (10)
where the coefficient ¢s remains the same than in statistical
modeling. The diffusion term .J;; appearing in equation (7)
due to the fluctuating velocities and pressure together with
the molecular diffusion, is modeled assuming a gradient law

hypothesis
(u ) (11)

where ¢s is a numerical coefficient set to 0.22. Closure of
equation (7) needs to model the subgrid tensorial dissipation
rate (e;j)sgs which is approached by 2/3ed;;. The model-
ing of dissipation-rate esgs is made in the present case by
means of its transport equation. This allows to obtain an
accurate estimate of the subgrid dissipation rate even in situ-
ation of non-equilibrium flows when the grid-size is no longer
a good estimate of the characteristic turbulence length-
scale. As a result of the theory developed in the spectral
space (Chaouat and Schiestel, 2007), the fluctuating mod-
eled transport equation for the subgrid-scale dissipation-rate
€sgs reads

O(7ij)sgs
6Il

k
Cs 298 (Tk:l )sgs
€sgs

O(7ij)sgs n

0
Jij - ox k

_%

2
D595 peer 5P~ agaen 295 4 U, (12)
Dt sgseq ksgs sgsen ksgs €

where P = Ppnm /2. The coefficient Csgse; 1S constant
whereas the coefficient ¢sgse, appearing in equation (12) is
now a function of the ratio to the subgrid energy to the total
energy (ksgs) /k as follows (Chaouat and Schiestel, 2007)

(ksgs)
k

Csgses = Ceq T (062 - C61) (13)
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and where the coefficients ¢, and ce, appearing in this
equation denote the usual constants used in the statisti-
cal dissipation rate transport equation. The theory shows
that the coefficients of the production term remain the
same for both RANS and LES dissipation-rate equations
Csgser = Ce; = 3/2. In the present case, the values retained
are ce; = 1.45 and ce, = 1.9. Equation (12) using the rela-
tion (13) constitutes the main feature of the PITM approach
where only the part of the spectrum for x > k. is modeled.
The ratio ksgs/k appearing in equation (13) is evaluated by
means of an accurate energy spectrum FE(k) inspired from
a Von Karmén like spectrum valid on the entire range of
wavenumbers leading to the result (Chaouat and Schiestel,
2009)

Cey — Ceq

[1+ By n2]/°

Equation (14) indicates that the function csgse, acts like
a dynamical parameter which controls the spectral distri-
bution of turbulence and verifies the limiting behaviors
lim 5.0 Csgses(Ne) = Ces, implying that the model be-
haves like a RANS/RSM whereas lim y.—00Csgses (M) = Ceq
meaning that the computation switches to DNS (or under
resolved DNS if the grid-size is not enough refined) because
the subgrid-energy can not maintain. The theoretical value
of the coefficient f3; in equation (14) is By, = (2/3Ck)%/?
where Ci is the Kolmogorov constant. In practice, this
value is optimized for C'x = 1.3 according to previous flow
simulations. The diffusion term J. appearing on the left
hand side of equation (12) is modeled assuming a well-known
gradient law hypothesis

(v

where the coefficient ¢, is set to 0.18.

Csgses (Ne) = Cey + (14)

Oesgs
OTm

k
€ 595 (ij)sgs
€sgs

O€sgs
ox;

-9
Ox;j

(15)

NUMERICAL METHOD AND CONDITIONS OF COMPU-
TATIONS

Numerical method

The numerical simulations are performed using a re-
search code (Chaouat, 2009) which is based on a finite vol-
ume technique. The governing equations of motion as well as
the transport equations of the stresses and dissipation-rate
are integrated in time by a Runge-Kutta scheme of fourth-
order accuracy. The convective fluxes at the interfaces re-
sulting from the finite volume technique are computed by a
numerical scheme of second-order accuracy in space which
is based on a quasi-centered discretized formulation of the
flow variables. The source terms of the turbulent equations
are solved by an implicit scheme to improve the numerical
stability. The code has been successfully calibrated on the
decay of homogeneous isotropic turbulence and fully tur-
bulent channel flows. Since the present hybrid RANS/LES
simulations require less grid points in the streamwise and
spanwise directions than in the normal direction, the CPU
time consuming is reduced in regard with refined LES sim-
ulations, although more equations need to be solved at each
time advancement.

NUMERICAL FLOW SIMULATIONS

Fully turbulent channel flow

The test case of the fully developed turbulent chan-
nel flow is considered for analyzing the potentials of the
subgrid-stress model regarding its capacity to reproduce the
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flow anisotropy and wall flows. Two different meshes are
generated with a coarse and a medium spatial resolutions
16 x 32 x 64 and 32 x 64 x 84, respectively in the streamwise,
spanwise and normal directions for checking the grid inde-
pendence of the solutions. The dimensions of the channel
are 20 X 26 x §. In the normal direction to the wall, the
grid points are distributed using non-uniform spacing with
refinement near the wall whereas they are uniform in the
two remaining directions, Ai" = 105.3, A;‘ = 50.9 for case
1 and A;r = 50.9, A;r = 25.1 for case 2. The LES results
are compared with DNS (Moser et al, 1999) for a Reynolds
number R; = 395, based on the friction velocity u, and
the channel half width §/2. For comparison purposes, nu-
merical LES simulations using the Smagorinsky model in a
version proposed by Lilly are also performed. Figure 1 shows
the profiles of the statistical mean velocity (u1) /ur for both
simulations that agree well with DNS data. Figure 2 dis-
plays the evolutions of the subgrid and resolved stresses in
the streamwise, spanwise and normal direction, respectively,
for the coarse and refined meshes. One can see that the sub-
grid scale stresses are indeed anisotropic in the vicinity of
the walls and that the sharing out of the turbulence ener-
gies is governed by the grid size. Figure 3 describes the
evolutions of the normalized total Reynolds stresses for the
two LES simulations performed on the coarse and refined
meshes It appears that the subgrid stresses agree well with
the DNS data for both the coarse and refined grids but the
stresses computed on the coarse mesh by the Smagorinsky
model highly overpredict the DNS data. Figure 4 concerned
with the budget of the subgrid turbulent energy shows the
evolutions of the subgrid production, diffusion and dissipa-
tion terms Psgs, Jsgs,€sgs in logarithmic coordinate for the
coarse LES simulation. Since these terms become impor-
tant close to the wall and decrease rapidly away the wall,
it is clear that the grid must be sufficiently refined near the
walls for correctly reproducing the physical processes act-
ing in the boundary layer, even when simulating industrial
flows. The two-point correlations of the resolved scales lo-
cated on the centerline of the channel z3 = § are plotted
on figure 5. As expected, the box size is adequate since the
longitudinal two-point correlation tensor almost returns to
zero and it is found that the velocity correlation Rj; in the
streamwise direction is larger than the corresponding trans-
verse correlations Rss or Rss. It is remarkable however that
the present calculation, in spite of its coarse grid resolution
in the center of the channel, succeeded in providing a good
qualitative evolution of the two-point correlation tensor.

Channel flow with streamwise periodic constrictions

The simulation of a periodic flow over a 2d hill is per-
formed on a coarse mesh in the aim to illustrate the poten-
tials of the PITM method, compared to RANS/RSM sim-
ulations. In particular, this test case is considered because
of the turbulence mechanisms associated with separation,
recirculation, reattachment, acceleration and wall flow ef-
fects that are difficult to reproduce. The hills constricts
the channel by about one third of its height and are spaced
at a distance of about 9 hill heights as seen in figure 6.
The dimension of the computational domain are Li = 9h,
Ly = 4.5h and L3 = 3.036h, where h denotes the hill height,
respectively in the streamwise, spanwise and normal direc-
tions. The Reynolds number, based on the hill height and
the bulk velocity about the crest is 10595. This flow was
previously investigated by large-eddy simulation (Fréhlich
et al., 2005; Breuer et al., 2009) using a dynamic Smagorin-
sky model on refined meshes of about 4.6 and 13.1 million
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grid points. In the present case, numerical simulations are
performed on a coarse curvilinear mesh 80 x 30 x 100 in
the streamwise, spanwise and normal directions (1/4 mil-
lion grid points) as shown in figure 6, using a RSM model
(Chaouat, 2006) and the PITM subgrid-scale stress. The
grid is however refined in the wall region for providing a
full resolution of the boundary layer without requiring wall
functions. Note that other team (Jakirlic et al., 2009) also
performed this case using a variant PITM model. Concern-
ing the computational domain, a no-slip and impermeability
boundary conditions are used at the wall whereas periodic
conditions are applied in the streamwise and spanwise di-
rections. A mean pressure gradient term is included in the
momentum equation for balancing the viscous friction at the
walls. In practice, the coeficient Cj, appearing in the coeffi-
cient 3, has been set to 1.4 to obtain an appreciable part of
the subgrid energy in comparison with the resolved energy.
Several numerical attempts have also revealed that equa-
tion (6) provides a too strong coupling with equations (7)
and (12). In the following, the computed results are com-
pared with highly resolved large-eddy simulation (Breuer et
al., 2009). Figure 7 shows the streamlines of the instanta-
neous flow field performed on the coarse grid by the PITM
model. The recirculation zone that extends in the lower wall
region is well visible. Figure 8 displays the velocity profiles
at three locations z/h = 2,4,6 and reveals a good agree-
ment with the reference data for both the RSM and PITM
computations. It appears however that the RSM velocities
disagree with the data in the immediate vicinity of the lower
wall regions and indicated that the flow reattaches too early
in the downstream channel. This difference should probably
attributed to the three dimensional flow effects that cannot
be reproduced by a RANS computation because of the 2d-
geometry. Figure 9, 10, and 11 show the evolutions of the
turbulent energy, the streamwise turbulent energy and the
turbulent shear stress, respectively, at the three locations
z/h = 2,4,6 for both the RSM and PITM computations. In
comparison with the highly resolved LES, one can see that
the turbulent intensity of the flow is well reproduced by the
RSM and PITM models. In particular, the stress profiles
present a qualitative good agreement with refined LES al-
though some discrepancies can be observed in the lower wall
region. The PITM computation slightly underpredicts the
turbulence intensity in the core flow whereas the RSM model
returns a lower turbulent peak in the upper wall region. At
this step, it seems also that the statistical convergence is
not fully reached since the PITM profiles are not perfectly
regular as it could be expected. This suggests that more
temporal iterations must be run to achieve a full statistical
convergence.

CONCLUSION

The PITM approach viewed as a continuous hybrid
RANS/LES model has been successfully applied for simu-
lating internal flows. The performance of the model and
especially, its capabilities in the anisotropy prediction have
been demonstrated in the fully turbulent channel flow test
case. The subgrid stress model has also fairly well repro-
duced the complex physics of the separated flow in the
channel with streamwise periodic constrictions, allowing also
a drastic saving of the computational time because of the
coarse mesh resolution. So that, it looks as a good can-
didate for simulating turbulent flows that presents complex
physics, providing the numerical scheme is sufficiently stable
and accurate.
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Figure 5: Streamwise two-point correlation function in the
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Figure 6: Cross-section of the curvilinear grid 80 x 100 of
the contracted channel.

Figure 7: Streamlines of the instantaneous flow field pre-
dicted by LES (PITM) at Re = 10595
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Fig 11. Turbulent shear stress 713/u? at /h =2, x/h =4, x/h = 6. LES (Breuer et al., 2009) —; PITM ---; RSM - -.
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