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ABSTRACT

An adaptive multiresolution method based on a second

order finite volume discretization is presented for solving the

three-dimensional compressible Navier–Stokes equations in

Cartesian geometry. The explicit time discretization is of

second order and for the flux evaluation a 2–4 Mac Cor-

mack scheme is used. Coherent Vortex Simulations (CVS)

are performed by decomposing the flow variables into co-

herent and incoherent contributions. The coherent part is

computed deterministically on a locally refined grid using

the adaptive multiresolution method, while the influence of

the incoherent part is neglected. The computational effi-

ciency of this approach, in terms of memory and CPU time

compression, is illustrated for a turbulent mixing layer in

the weakly compressible regime. A comparison with direct

numerical simulation allows to assess the precision and effi-

ciency of CVS.

INTRODUCTION

The numerical simulation of fully-developed turbulent

flows in the incompressible and even more in the compress-

ible regime is still a challenging task in computational fluid

dynamics. The difficulty comes from the nonlinear dynam-

ics of the Navier–Stokes equations, which excite a very large

range of temporal and spatial scales. To perform compu-

tations in industrially relevant configurations, turbulence

models are necessary because Direct Numerical Simulation

(DNS) of fully–developed turbulent flows is up to now, and

in the near future, limited to low Reynolds numbers. How-

ever, most turbulence models used in industrial codes are

based on phenomenology, and thus require tuning of their

parameters for each flow configuration.

Multiscale and multiresolution methods for modeling and

computing turbulent flows have become more and more fash-

ionable, also for compressible flows, due to their efficiency

and improved fidelity with respect to classical approaches.

An overview can be found in the book of Sagaut and cowork-

ers (2006) or in a forthcoming review article by Schneider &

Vasilyev (2010).

The Coherent Vortex Simulation (CVS), which is based

∗Present address: Universidade Estadual de Campinas,
IMECC, Caixa Postal 6065, 13083–970 Campinas, SP, Brazil

on a multiresolution decomposition, has been introduced by

Farge, Schneider and coworkers (1999, 2001) for modeling

incompressible turbulent flows. The flow is split into coher-

ent and incoherent contributions by means of an orthogonal

wavelet filtering of the vorticity field. The coherent flow is

then computed deterministically, while the influence of the

incoherent background flow is statistically modelled or ne-

glected.

For incompressible isotropic turbulence, it was shown

by Okamoto et al. (2007), that the number of degrees

of freedom N required for CVS grows slower with the

Reynolds number Re, i.e. N ∝ Re3.9, than for DNS where

Kolmogorov-type arguments imply N ∝ Re4.5. This moti-

vates the development of CVS for computing fully developed

turbulent flows. Hereby adaptive space discretizations are

essential to be able to benefit from the efficient representa-

tion of the coherent flow to be computed, in terms of memory

and CPU time savings.

In Roussel et al. (2003) we presented an efficient adaptive

multiresolution method for evolutionary PDEs, which is in

the currect work applied to the compressible Navier–Stokes

equtions for advancing the coherent flow components on a

dynamically adaptive grid.

In the following, we present CVS computations of a

weakly compressible mixing layer and compare the results

with a DNS reference run. For further details, we refer the

reader to Roussel & Schneider (2009).

COMPRESSIBLE NAVIER–STOKES EQUATIONS

We consider the three-dimensional compressible Navier–

Stokes equations in a domain Ω ⊂ R
3. Using Einstein’s

summation convention, the balance equations in Cartesian

coordinates can be written in the following dimensionless

form,

∂ρ

∂t
= − ∂

∂xj
(ρ uj)

∂

∂t
(ρ ui) = − ∂

∂xj
(ρ ui uj + p δi,j − τi,j) (1)

∂

∂t
(ρ e) = − ∂

∂xj

(
(ρ e + p) uj − ui τi,j − λ

∂T

∂xj

)

where ρ, p,T and e denote the dimensionless density, pres-
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sure, temperature and specific total energy per unit of mass,

respectively, and (u1, u2, u3)T is the dimensionless velocity

vector. The components of the dimensionless viscous strain

tensor τi,j are

τi,j =
μ

Re

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δi,j

)
, (2)

where μ denotes the dimensionless molecular viscosity and

Re the Reynolds number. The dimensionless conductivity λ

is defined by

λ =
μ

(γ − 1) Ma2 Re Pr
, (3)

where γ, Ma and Pr respectively denote the specific heat

ratio and the Mach and Prandtl numbers.

The system is completed by an equation of state for a

calorically ideal gas

p =
ρ T

γ Ma2
. (4)

and suitable initial and boundary conditions.

Assuming the temperature to be larger than 120 K, the

molecular viscosity varies with the temperature according to

the dimensionless Sutherland law

μ = T
3
2

(
1 + Ts

T + Ts

)
(5)

where Ts ≈ 0.404.

Denoting by (x, y, z) the three Cartesian directions, this

system of equations can be written in the following compact

form
∂U

∂t
= −∂F

∂x
− ∂G

∂y
− ∂H

∂z
(6)

where U = (ρ, ρu1, ρu2, ρu3, ρe)T denotes the vector of

the conservative quantities, and F , G, H are the flux vectors

in the directions x, y, and z, respectively.

CVS METHOD

In this section, we present an extension of the CVS

method to compressible flows. The CVS method is based

on the observation that turbulent flows contain both an

organized part, the coherent vortices, and a random part,

the incoherent background flow. The separation into coher-

ent and incoherent contributions is done using a non-linear

wavelet filtering. As for compressible flows both vortical

and potential components are present, we decompose the

conservative variables U = (ρ, ρu1, ρu2, ρu3, ρe) into

a biorthogonal wavelet series by applying the cell-average

multiresolution transform described in Harten (1995).

First the dimensionless density and pressure are decom-

posed into

ρ = ρC + ρI , (7)

p = pC + pI .

where ρC and pC respectively denote the coherent part of

the density and pressure fields, while ρI and pI denote the

corresponding incoherent parts.

Then the other remaining variables, i.e. the velocity com-

ponents u1, u2, u3, the temperature T and energy e, are

decomposed using the Favre averaging technique, i.e., den-

sity weighted, as done in RANS and LES of compressible

flows to simplify modeling. For a quantity ϕ corresponding

to one of these remaining variables, we obtain the following

decomposition,

ϕ = ϕC + ϕI , where ϕC =
(ρϕ)C

(ρ)C
(8)

Finally, retaining only the coherent contributions of the

conservative variables we obtain the filtered compressible

Navier–Stokes equations which describe the flow evolution

of the coherent flow UC .

The evolution of the coherent flow UC is computed in

physical space using a finite volume scheme on a locally

refined grid, while the incoherent contributions UI are dis-

carded during the flow evolution, which models turbulent

dissipation. To discretize the convective terms in space

and time, we use a 2–4 McCormack scheme (Gottlieb &

Turkel, 1976), while the diffusive terms are discretized us-

ing a second–order centered scheme in space and an explicit

second–order Runge–Kutta scheme in time. The wavelet

basis used for the filtering relies on the cell–average mul-

tiresolution analysis developed by Harten (1995). After the

filtering, the discarded coefficients are removed from mem-

ory, so that both CPU time and memory requirements are

significantly reduced in comparison with the DNS compu-

tation. The data structure is organized into a graded-tree

form to be able to navigate through it. To perform the

CVS computations, a three–dimensional adaptive multires-

olution algorithm (Roussel et al. 2003), originally developed

for reaction–diffusion equations, has been extended to the

compressible Navier–Stokes equations. Extensions of the

adaptive multiresolution scheme to the compressible Eu-

ler equations can be found in Domingues et al. (2009).

Local scale–dependent time stepping was investigated in

Domingues et al. (2008), which allows a further speed–up

of space–adaptive schemes.

NUMERICAL RESULTS

As example, we apply the CVS method here to compute

a time–developing three–dimensional turbulent mixing layer

in the weakly compressible regime. CVS computations of

incompressible turbulent mixing layers have been presented

in Schneider et al. (2005). In this test-case, both layers have

the same initial velocity norm, but oposite directions. An

initial three-dimensional sinusoidal perturbation is added to

the basic profile. The flow configuration is depicted in Fig. 1.

The maximal resolution of the computation is 1283, which

corresponds to L = 7 scales. The computational domain is

a three–dimensional cube Ω = [−30, 30]3 and the final time

of all computations corresponds to t = 80. Periodic bound-

ary conditions are applied for the x- and y-directions and

Neumann conditions are imposed in the z-direction. The

Prandtl and Mach numbers are set to 0.71 and 0.3 respec-

tively, whereas the specific heat ratio γ equals 1.4. The CFL

number is set to 0.4. The Reynolds number based on the ini-

tial velocity norm and half the initial layer thickness yields

200. The CVS result is compared with the one obtained by

DNS performed on the regular finest grid with the same nu-

merical scheme (Table 1). We find that only 17.9 % wavelet

coefficients contain around 98.3 % of the energy and 93.4 %

of the enstrophy. Taking into account all the nodes of the

tree data structure, these wavelet coefficients represent 30.2

% of the 1283 = 2097152 cells that the fine–grid computa-

tion requires. Concerning the CPU time, it only represents

29.0 % of the one required by the DNS, i.e., CVS is in the

present case three times faster than DNS.

Isosurfaces of vorticity, shown in Fig. 2 (top), illustrate
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Table 1: Comparison between DNS and CVS of a 3D com-

pressible mixing layer, Ma = 0.3, Re = 200. CPU time

required on a Pentium IV 2.5 GHz, percentages of CPU

time, required memory, total energy E and total enstrophy

Z in comparison with the DNS computation.

Method % CPU % Mem % E % Z

DNS 100.0 % 100.0 % 100.0 % 100.0 %

CVS 29.0 % 30.2 % 98.3 % 93.4 %

the flow evolution. At t ≈ 19, the Kelvin–Helmholtz insta-

bility generates four rollers in the streamwise direction. At

the beginning, the mixing layer remains approximately two–

dimensional, later on, the vortices begin to pair so that, at

t ≈ 37, we observe two vortex pairings. At t ≈ 78, these

two pairings are finished and three–dimensional structures

appear, generated by the oblique mode between the two re-

maining vortices. For longer computational times, assuming

that the domain is sufficiently large, these two vortices would

pair again, thus leading to only one vortex. The adaptive

grid in Fig. 2 (bottom) shows that the adaptive multireso-

lution method automatically tracks the flow evolution. To

compare the the CVS results with the DNS reference com-

putation we plot in Fig. 3 the evolution of energy (left),

enstrophy (center) and of the streamwise energy spectrum

at the final time instant (right). The CVS and DNS spectra

are in good accordance except for smallest scales, i.e., for

k > 10, where a slight difference between CVS and DNS

can be observed. The time evolution of energy and enstro-

phy (Fig. 3, left and center) confirm the good agreement

between the CVS and DNS computations, keeping in mind

that CVS requires around one third of the CPU time and

the memory required by the DNS (Table 1).

L x

L y

L z

Uo

Figure 1: Flow configuration: domain and initial basic flow

u0 of the three–dimensional mixing layer.

CONCLUSIONS

The above computations for a three–dimensional weakly

compressible mixing layer show that the CVS method yields

accurate results in comparison with DNS, while reducing

the CPU time and memory requirements by around a factor

three. Further work will focus on the CVS of compressible

mixing layers with larger values of both Mach and Reynolds

numbers, i.e., in a more turbulent and more compressible

regime, for which higher compression of memory and CPU

time are expected, cf. Domingues et al. (2009).
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Figure 2: CVS of a 3D weakly compressible mixing layer, Ma = 0.3, Re = 200. Top: isosurfaces of vorticity ‖ ω ‖= 0.6 (black)

and ‖ ω ‖= 0.4 (gray) at t = 18 (left), t = 37 (center), and t = 80 (right). Bottom: corresponding adaptive grids.
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Figure 3: Comparison between DNS and CVS for a 3D weakly compressible mixing layer, Ma = 0.3, Re = 200. Left: time

evolution of kinetic energy E. Center: time evolution of enstrophy Z. Right: energy spectra in the streamwise direction at

t = 80.
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