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ABSTRACT

The objective of this paper is the analysis and the control

of local truncation errors in Large Eddy Simulations. We show

that physical reasoning can be incorporated into the design of

discretization schemes. Using systematic procedures, a non-

linear discretization method is developed where numerical and

turbulence-theoretical modeling are fully merged. The trun-

cation error itself functions as an implicit turbulence model

which accurately represents the effects of unresolved turbu-

lence.

INTRODUCTION

Turbulence modeling and the numerical discretization of

the Navier-Stokes equations are strongly coupled in Large

Eddy Simulations (LES). Since subgrid-scale (SGS) models

generally operate on scales that are only marginally resolved

by the underlying numerical method, the truncation error of

common approximations for the convective terms can out-

weigh the effect of even physically sound models. This mutual

interference can have large and generally unpredictable ef-

fects on the accuracy of the solution. A different approach

is to exploit this link by developing discretization methods

from subgrid-scale models, or vice versa. Approaches where

SGS models and numerical discretizations are fully merged are

called implicit LES (ILES).

SGS effects are modeled explicitly if the underlying con-

servation law is modified and subsequently discretized. The

filtering concept of Leonard (1974) is commonly employed for

deriving explicit SGS models without reference to a compu-

tational grid and without taking into account a discretization

scheme. As implicit modeling we denote the situation when

the unmodified conservation law is discretized and the numer-

ical truncation error acts as an SGS model. Since this SGS

model is implicitly contained within the discretization scheme,

an explicit computation of model terms becomes unnecessary.

Most previous approaches to implicit SGS modeling have

relied on the application of pre-existing discretization schemes

to fluid-flow turbulence. Consequently, methods with suit-

able implicit SGS models have usually been found by trial

and error, which has led to the common belief that an im-

plicit subgrid-scale model is merely inferred by the choice of

discretization. Comparative studies have shown that stabiliz-

ing under-resolved simulations by upwind or non-oscillatory

schemes is insufficient for accurately representing SGS tur-

bulence. For example, Honein and Moin (2005) found that

traditional ILES required differently tuned parameters to pre-

dict the correct decay rates of different quantities. Employing

implicit LES for prediction requires numerical methods that

are specially designed, optimized and validated for the partic-

ular differential equation to be solved. A full coupling of the

SGS model and the discretization scheme cannot be achieved

without incorporating physical reasoning into the design of the

implicit SGS model.

Implicit SGS modeling requires procedures for design, anal-

ysis and optimization of non-linear discretization schemes.

In order to improve on the aforementioned modeling uncer-

tainties, we have proposed a systematic framework for im-

plicit LES. The resulting adaptive local deconvolution method

(ALDM) for implicit LES is based on a non-linear deconvo-

lution operator and a numerical flux function (Adams et al.,

2004; Hickel et al., 2006). Free parameters inherent to the

discretization allow for the truncation error to be calibrated

such that it acts as a physically motivated SGS model.

ALDM has shown the potential for providing a reliable,

accurate and efficient method for LES. The method is estab-

lished for LES of turbulent flows governed by the incompress-

ible Navier-Stokes equations and for passive-scalar mixing

(Hickel and Adams, 2007; Hickel et al., 2007). The subject

of this paper is the extension of the methodology to ILES of

compressible turbulence.

DISCRETIZATION DESIGN

The ALDM approach

For brevity of notation, the following summary of the basic

ideas behind ALDM is given for a 1-D case and a generic non-

linear transport equation

∂tu + ∂xF (u) = 0 . (1)

Following Leonard (1974) the discretized equation is obtained

by convolution with a homogeneous filter kernel G and the

subsequent discretization

∂tuN + G ∗ ∂xFN (uN ) = −G ∗ ∂xτSGS , (2)

where the overbar denotes the filtering

u(x) =

+∞Z

−∞

G(x − x′)u(x′)dx′ = G ∗ u , (3)

and the subscript N indicates grid functions obtained by pro-

jecting continuous functions onto the numerical grid xN =
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{xj}. The subgrid-stress tensor

τSGS = F (u) − FN (uN ) (4)

originates from the grid projection of non-linear terms and

has to be modeled in order to close Eq. (2). With Leonard’s

approach the filtering of the continuous system is considered

as predominant approximation where the numerical error in

solving this continuous system is supposed to be negligibly

small. Consequently, explicit SGS models are usually derived

without reference to a computational grid and without taking

into account any discretization scheme.

The unfiltered, i.e., continuous, solution u is unknown in

LES. However, accurate approximations euN of the discrete

grid function uN can be obtained from uN by regularized

deconvolution. Hence, the solution uN obtained with the dis-

crete operators does not satisfy Eq. (2), but rather a modified

differential equation

∂tuN + G ∗ ∂xFN (uN ) = GN − eG ∗
e∂xeτSGS . (5)

Solved numerically, the discrete approximation of the SGS

model interferes with the truncation error of the underlying

discretization scheme

GN = G ∗ ∂xFN (uN ) − eG ∗
e∂x
eFN (euN ) , (6)

where a tilde indicates the respective numerical approxima-

tion. This interference of model and discretization is exploited

in implicit LES. Particularly, an explicit SGS model is re-

sembled if the filtered divergence of the model SGS tensor is

approximated by

GN ≈ −G ∗ ∂xτSGS (7)

so that no model terms have to be computed explicitly during

time advancement. With ALDM numerical discretization and

SGS modeling are merged entirely. The discrete system for

evolving a grid-function approximation is considered directly

as a truncated representation of the unmodified continuous

system (1).

A suitable environment for the discretization design is pro-

vided by Schumann’s concept of a finite-volume method (Schu-

mann, 1975). The averaging and reconstruction steps that are

involved in finite-volume discretizations are related to the fil-

tering and deconvolution that are well known in explicit SGS

modeling. An advantageous aspect is the fact that the numer-

ical truncation error of finite-volume methods readily appears

as a divergence of a tensor, as required for physically motivated

implicit modeling by Eq. (7). Although filtering is not per-

formed explicitly, we can use the filter formulation of Leonard

as an analytical tool when designing and analyzing the dis-

crete operators. A finite-volume discretization corresponds to

the evaluation of Eq. (2) with a top-hat filter

G(x − xj , h) =

j
1/h , |x − xj | ≤ h/2

0 , else
, (8)

on a computational grid with spacing h. With ALDM, a local

reconstruction of the unfiltered solution is obtained from a

solution-adaptive combination

eu∓(xj±1/2) =
KX

k=1

k−1X

r=0

ω∓

k,r(γk,r , uN )ep∓k,r(xj±1/2) (9)

of Harten-type deconvolution polynomials

ep∓k,r(xj±1/2) =

k−1X

l=0

c∓k,r,l(xN )uj−r+l , (10)

where half-integer indices denote reconstructions at the cell

faces. The grid-dependent coefficients c∓k,r,l are chosen such

that

ep∓k,r(xj±1/2) = u(xj±1/2) + O

“
hk
”

. (11)

Adaptivity of the deconvolution operator is achieved

by dynamically weighing the respective contributions by

ωk,r(γk,r , uN ), where γk,r are free model parameters. In-

stead of maximizing the order of accuracy, deconvolution is

regularized by limiting the degree k of local approximation

polynomials to k ≤ K and by permitting all polynomials of

degree 1 ≤ k ≤ K = 3 to contribute to the approximately

deconvolved solution. Secondary regularization is provided by

a suitable consistent numerical flux function

eFN = F

„
1

2

`
eu− + eu+

´
«

− R(σ, u, eu)
`
eu+

− eu−
´

, (12)

where R(σ, u, eu) can be any non-negative, shift-invariant func-

tional of u and eu which needs to defined specifically for the

particular differential equation.

The solution-adaptive stencil-selection scheme and the nu-

merical flux function contain free parameters {γk,r , σ} which

can be used to adjust the spatial truncation error of the dis-

cretization. For implicit SGS modeling, the values of these

free parameters are determined in such a way that the trunca-

tion error GN of the discretization method acts as a physically

motivated SGS model. Explicit deconvolution-type SGS mod-

els have so far been limited to linear deconvolution. ALDM

extends, by employing methods that are well established for

essentially non-oscillatory finite-volume discretizations, the

concept of approximate deconvolution to the solution-adaptive

non-linear case. The resulting method represents a full merg-

ing of numerical discretization and SGS model. Incorporating

the essential elements of LES, filtering and deconvolution,

the implicit model of ALDM combines an implicit tensor-

dissipation regularization with a generalized scale-similarity

approach.

ALDM for compressible turbulence

We consider the 3-D compressible Navier-Stokes equations

in conservative form

∂tU + ∇ · F (U) + ∇ · D(U) = 0 (13)

with the solution vector U = [ρ, ρu1, ρu2, ρu3, E]. The con-

served variables are density ρ, momentum ρui and total energy

E. For later convenience, the flux is split in the convective part

Fi(U) =

[ uiρ, uiρu1 + δi1p, uiρu2 + δi2p, uiρu3 + δi3p, ui(E + p) ]

(14)

and the viscous part

Di(U) = [ 0, −τi1, −τi2, −τi3, −ukτik + qi ] (15)

where ui is the velocity vector, τij denotes the viscous stress

tensor

τij = μ(T )(∂jui + ∂iuj − 2/3δij∂kuk) , (16)
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and the heat flux in the energy equation is

qi = −κ(T )∂iT . (17)

The above equations are solved in dimensionless form. By as-

suming an ideal gas, the governing flow parameters are the

Reynolds number Re, the Prandtl number Pr, the Mach num-

ber Ma and the ratio of specific heats γ. The pressure p and

temperature T are determined by the definition of the total

energy

E =
1

γ − 1
p +

1

2
ρu2 (18)

and the ideal-gas equation of state

T = γMa2 p

ρ
. (19)

A power law is assumed for the temperature dependence of

viscosity

μ =
T 0.67

Re
(20)

and thermal conductivity

κ = μ
1

(γ − 1)Ma2Pr
. (21)

For implicit SGS modeling we essentially focus on the hyper-

bolic flux F , whose discretization causes the SGS effects of

interest. The novel discretization is derived for ∇ ·F , whereas

standard centered differences are used for discretizing the vis-

cous flux D. The discretization of the viscous flux D has

negligible influence on the results of LES at large Reynolds

number, since the grid cutoff is typically chosen to be within

the inertial range.

The starting point of this work is provided by our estab-

lished methodology for implicit LES of incompressible turbu-

lence and passive scalar mixing. For this reason, a staggered

Cartesian grid is considered in this paper. Density, energy and

the thermodynamic quantities are discretized on the primary

grid, whereas the control volumes of the momentum are stag-

gered by half a cell. An analogous scheme for collocated grids,

which appears to be superior when turbulence interacts with

shocks, is currently under development and will be published

elsewhere.

The numerical building blocks of finite-volume methods

are a reconstruction of the unfiltered solution at cell faces,

a numerical flux function that works on the reconstructed so-

lution, and a numerical integration scheme to compute the

face-averaged flux.

The local adaptive reconstruction scheme of ALDM has

been outlined above. Here, it is applied to density, velocity,

momentum and enthalpy H = E+p. The computational costs

of a multi-dimensional finite-volume scheme strongly depends

on the implementation of the reconstruction step. An efficient

method for the 3-D reconstruction scheme of ALDM is given

in Hickel and Adams (2006). This simplified adaptive local

deconvolution (SALD) method reduces the amount of compu-

tational operations without affecting the quality of the LES

results. The SALD implementation is used for all computa-

tions in this paper.

During computational experimentation it became apparent

that the formulation of the transporting velocities for density

and enthalpy is crucial. Several seemingly consistent defini-

tions, such as the form proposed by Hickel et al. (2007) for

passive-scalar mixing, led to a strong over-estimation of the di-

latational velocity, though all other monitored quantities were

accurately predicted. We finally found that

euo
ijk = 2ρuijk / (eρ+

i+ 1
2

jk
+ eρ−

i+ 1
2

jk
)

evo
ijk = 2ρvijk / (eρ+

ij+ 1
2

k
+ eρ−

ij+ 1
2

k
) (22)

ewo
ijk = 2ρwijk / (eρ+

ijk+ 1
2

+ eρ−
ijk+ 1

2

)

results in a proper scaling of the dilatation. Note that we use

{u, v, w} and {ρu, ρv, ρw} synonymously with {u1, u2, u3} and

{ρu1, ρu2, ρu3} in the following.

With these prerequisites, the numerical flux function eF can

be defined. The proposed numerical flux consists of two parts.

The first term corresponds to the physical Navier-Stokes flux.

For maximum order of consistency it is computed from the

mean of both reconstructions of the unfiltered solution at the

considered cell face. Note that this modification of the Lax-

Friedrichs approach (where the flux is averaged) results in a

skew-symmetric like discretization with favorable aliasing be-

havior. The difference between both interpolants is exploited

in a second term as an estimate of the local truncation error.

The numerical flux for the continuity equation and the energy

equation is

eFφ =
1

2

2

6
6
6
4

euo
i−1 jk (eφ+

i− 1
2

jk
+ eφ−

i− 1
2

jk
)

evo
ij−1 k (eφ+

ij− 1
2

k
+ eφ−

ij− 1
2

k
)

ewo
ijk−1

(eφ+

ijk− 1
2

+ eφ−

ijk− 1
2

)

3

7
7
7
5

−σφ

2

6
6
6
4

|eu+

i− 3
2

jk
− eu−

i− 1
2

jk
| (eφ+

i− 1
2

jk
−
eφ−

i− 1
2

jk
)

|ev+

ij− 3
2

k
− ev−

ij− 1
2

k
| (eφ+

ij− 1
2

k
−
eφ−

ij− 1
2

k
)

| ew+

ijk− 3
2

− ew−

ijk− 1
2

| (eφ+

ijk− 1
2

−
eφ−

ijk− 1
2

)

3

7
7
7
5

,

(23)

where φ has to be replaced by ρ and H, respectively. The

numerical flux for the momentum equation is defined anal-

ogously. Note that we use different parameters, σ∗

ρu versus

σρu, for the diagonal and off-diagonal components of the mo-

mentum flux. In total, the numerical flux functions introduce

four free parameters {σρ, σ∗

ρu, σρu, σE} that will be used for

implicit SGS modeling.

SUBGRID-SCALE MODELING

Analysis

In classical numerical analysis, truncation errors are ana-

lyzed in the limit of small grid size compared to the smallest

flow scale, and discretization coefficients are chosen in such

a way that the formal order of accuracy of the discretiza-

tion is maximum. In LES the chosen grid size essentially

defines the smallest represented physical scale. In particu-

lar for implicit LES, numerical discretization and turbulence

model are indistinguishable. Unlike with high-order shock-

capturing schemes, such as the WENO method where one tries

to maximize the formal order of accuracy for smooth solutions,

the free parameters of ALDM are selected in such a way that

the truncation error of the discretization acts as a physically

motivated SGS model. For the purpose of finding suitable

discretization parameters, the modified differential equation

of the discretization method is analyzed by measuring the

spectral numerical dissipation and diffusion in simulations of
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freely decaying homogeneous isotropic turbulence. This a pos-

teriori analysis follows from the hypothesis that the primary

purpose of an SGS model is to provide the correct spectral dis-

tribution of the dissipation and diffusion of resolved scales by

interactions with modeled SGS stresses. A semi-analytical ex-

pression for the eddy viscosity and eddy diffusivity spectrum

of isotropic turbulence at high Reynolds numbers was given by

Chollet and Lesieur (Chollet, 1984) based on the eddy-damped

quasi-normal Markovian (EDQNM) theory. Note that this

particular form of the eddy viscosity is not enforced. Only for

inertial-range isotropic turbulence is it necessarily recovered

due to the parameter calibration.

Parameter calibration

For parameter evaluation and optimization we perform LES

of isotropic homogeneous turbulence at an infinite computa-

tional Reynolds number and Mach number Mat = 0.3. The

(2π)3-periodic computational domain is discretized with 323

cells. The initial data is obtained by filtering and truncating

data from the inertial range of separate direct numerical sim-

ulations (DNS). A set of parameters is evaluated by a cost

function, that is defined as the L2 norm of the deviations of

the measured numerical viscosity and diffusivity from a ref-

erence based on EDQNM theory. Optimal parameter values

that minimize this norm are identified by an automatic opti-

mization algorithm.

In a general scheme, different parameter values for the den-

sity, momentum and energy equation are possible, resulting in

16 parameters in total. In order to accelerate the convergence

of the optimization algorithm, only the values of the 4 pa-

rameters {σρ, σ∗

ρu, σρu, σE} of the flux function are subjected

to optimization, whereas the parameters of the reconstruc-

tion scheme {γk,r} are adopted from the incompressible model

without modification.

The cost function is computed from the averaged numerical

viscosity and diffusivity spectra from 5 independent simula-

tions, each advanced by 5 time steps. These numbers of time

steps and realizations were chosen as a compromise between

accuracy and computational feasibility. They are less than

what would be necessary to completely remove the effect of

stochastic fluctuations. Thus the resulting cost function is not

smooth but exhibits residual fluctuations. Unlike standard

gradient-approximation based optimization methods, evolu-

tionary algorithms can handle such non-smooth cost functions

(Back et al., 1997).

Evolutionary optimization algorithms model natural bio-

logical processes by simple stochastic search methods. A set

of free parameters is considered as the genome of a living

individual. The algorithm operates on a population of indi-

viduals and applies the survival-of-the-fittest principle of the

Darwinian theory of evolution. At each generation, a new set

of individuals is created by modeled natural processes, such

as selection according to the level of fitness, recombination

and random mutation. This process leads to the evolution of

a population of individuals that is better adapted to a cost

function than the population that it was created from. Since

this algorithm works on populations instead of single individ-

uals, the search is performed in an efficient parallel manner.

For further details, the reader is referred to Back et al. (1997)

and the references therein.

The performance and convergence of the employed opti-

mization algorithm strongly depend on the mutation model.

Table 1: Optimized parameters.

Parameter Value

σρ 0.6699

σρu 0.6302

σ∗

ρu 0.0638

σE 0.8093

We employ normally distributed random numbers. The vari-

ance is initially set to σ2
mut = 0.1 and updated by a factor

of 0.95±1 after every generation, where successful mutations

enlarge the target area and unsuccessful mutations make it

smaller.

Normally distributed random numbers were used as the

initial guess for the first population. The subsequent genera-

tions are created by a four-step algorithm consisting of parent

selection, recombination, mutation and new-population selec-

tion. This scheme is iterated until a maximum number of

generations is reached. The final set of parameters, which was

selected after evaluating 219 generations, each with 32 indi-

viduals, is given in Table 1.

VALIDATION

Comte-Bellot–Corrsin experiment

The first test case is decaying grid-generated turbulence

according to the wind-tunnel experiments of Comte-Bellot

and Corrsin (1971), denoted hereafter as CBC. CBC pro-

vides streamwise energy spectra for grid-generated turbu-

lence at three positions downstream of a mesh with width

M = 5.08 cm. Table 3 of CBC gives corresponding 3-D en-

ergy spectra which were obtained under the assumption of

isotropy. The grid Reynolds number of the experiment is

ReM = 34, 000, the Taylor-microscale Reynolds number is

given as Reλ = 71.6 at the first and Reλ = 60.6 at the last

position.

In the simulation this flow is modeled as decaying turbu-

lence in a (2π)3-periodic computational domain. Based on the

Taylor hypothesis the temporal evolution in the simulation

corresponds to a downstream evolution in the wind-tunnel

experiment with the experimental mean-flow speed which is

approximately constant. The Reynolds number is adapted to

the wind-tunnel experiment, while the turbulent Mach num-

ber is set to Mat = 0.1. Computations are initialized at time

t = 0 with a random velocity field with a prescribed kinetic

energy spectrum to match the first measurement station of

CBC. The method of Ristorcelli and Blaisdell (1997) is used

to impose consistent initial data for density, velocity dilata-

tion, and total energy. The 3-D kinetic energy spectrum is

maintained constant for 0 ≤ t ≤ 42 by applying a spectral

forcing to the solenoidal velocity field. During this initial tran-

sient the random-phase initial solution develops physical flow

structures and correlations. This forcing is suspended when

the first measuring station of CBC is reached at t = 42.

Since the kinetic energy distribution of the initial velocity

field is matched to the first measured 3-D energy spectrum, the

SGS model is validated by comparing computational and ex-

perimental mean values and 3-D spectra of the kinetic energy

at later time instants t = 98 and t = 172 which correspond to
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Figure 1: Kinetic energy (a) and 3-D kinetic-energy spectra

(b) for implicit LES of decaying grid-generated turbulence ac-

cording to the wind-tunnel experiments of Comte-Bellot and

Corrsin (1971). −−−−−−− LES results for grid resolutions 163,

323 and 643; � filtered experimental data; © experimental

3-D spectra at three subsequent stations (t = 42, t = 98,

t = 172).

the other two measuring stations. Figure 1 shows results for

LES at three grids with 163, 323 and 643 cells. The mean ki-

netic energy agrees very well with the experimental data that

has been filtered to the respective grid resolution. Reason-

able predictions are obtained for the 3-D spectra (Fig. 1b).

These results prove the applicability of the proposed modeling

concept to flows in the incompressible limit.

Decaying compressible turbulence at Mat=0.3

For a second test we consider decaying turbulence with sig-

nificant compressibility effects. The initial turbulent Mach

number and Taylor-scale Reynolds number are Mat = 0.3 and

Reλ = 100. The flow is initialized with a random velocity field

and prescribed kinetic energy spectrum

k(ξ) ∼ ξ4(exp)(−2ξ2/ξ2
0) , (24)

with ξ0 = 4. Consistent initial data for density, velocity dilata-

tion and total energy are imposed as proposed by Ristorcelli

and Blaisdell (1997). Contrary to the previous test case, no

initial forcing is applied. The decay of the random field starts

immediately and may be influenced by the unphysical phases.

The chosen Reynolds number allowed for a DNS at a grid

resolution of 1283 cells that serves as a reference for the im-

plicit LES at a grid resolution of 323 cells. Figure 2 shows the

time evolutions of the kinetic energy and the fluctuations of

density, pressure, temperature and dilatation. Instantaneous

spectra at 10 instants in time are shown for kinetic energy,

density, pressure and temperature in Fig. 3. The LES results

for all quantities compare well with DNS data that has been

filtered to the LES resolution. Note that the DNS and LES

are different realizations with different random initial data.

The model predicts the correct time development of the r.m.s.

temperature, density and pressure fluctuations, as well as the

proper inertial-range scaling in the spectra.

0 2 4 6 8 10

0.1

1
(a)

k

ρ′rms

p′rms

T ′

rms

t/τeddy

0 2 4 6 8 1010-4

10-3

10-2

10-1

(b)

drms

t/τeddy

Figure 2: Decay of (a) −−−−−−− © kinetic energy, ·−·−·− �
density, −··−··−� pressure, −−−− � temperature, and (b)

−−−−−−− � dilatation fluctuations for implicit LES (lines) and

filtered DNS (symbols) of compressible isotropic turbulence.

The time is given in eddy-turnover times.

DISCUSSION

We have presented an environment for the design of implicit

SGS models for LES of compressible turbulence. The resulting

adaptive local deconvolution method (ALDM) represents a full

merger of numerical discretization and subgrid-scale model.

An optimization of the free discretization parameters was done

using DNS data of the inertial subrange in isotropic turbu-

lence. The method was then tested by computing different
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Figure 3: 3-D spectra of kinetic energy and variations of density and temperature for implicit LES of compressible isotropic

turbulence. −−−−−−− LES −−−− DNS.

cases of decaying isotropic turbulence, at different Mach and

Reynolds numbers. The predicted spectra and decay rates of

all quantities were found to agree well with experimental data

and DNS results, respectively. This is a very encouraging re-

sult, especially given the disappointing results in Honein and

Moin (2005).

ALDM was originally developed for incompressible flows.

In incompressible LES only the decay rate of kinetic energy

must be predicted; in compressible LES one must also pre-

dict the decay rates of the density, pressure, temperature and

dilatation fluctuations. In the sense of Kovasznay (1953),

compressible LES must correctly model vorticity, entropy and

acoustic modes, while the first mode alone is sufficient in in-

compressible LES. Thus it is not surprising that Honein and

Moin (2005) found that traditional implicit LES cannot si-

multaneously predict the correct decay rates of these different

quantities – while it could be tuned for any one quantity (e.g.,

density fluctuations), this inevitably caused errors in other

quantities. This shows that the application of implicit LES to

compressible turbulence is non-trivial, and it is in this context

that the present work should be viewed.

Finally, we note that the flux formulations at the core of the

present method should allow for the capturing of shock waves,

albeit possibly with different values of the free parameters.

Preliminary tests confirm that this is possible. Thus an item in

future work is to properly investigate how to make the method

shock-capturing without sacrificing the excellent turbulence

predictions found here.
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