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ABSTRACT

In this paper, the non-filtered velocity field in a well-

developed turbulent channel flow is simulated in the frame-

work of LES-SSAM (stochastic subgrid acceleration model),

Sabelnikov et al. (2007). A new stochastic subgrid scale

(SGS) model is proposed. This model introduces explicitly

the cross-channel correlation of subgrid velocity gradients

and includes two parameters: the Reynolds number based

on the friction velocity, and the channel half-width. The ob-

jective is to assess the capability of this model in comparison

to the standard large-eddy simulation (LES) and to direct

numerical simulation (DNS).

INTRODUCTION

The structure of well-developed turbulent wall layer in

the channel flow is highly intermittent. Close to the wall,

the low-speed regions are interleaved with tiny zones of

high-speed motion. The main role in this intermittency is at-

tributed to quasi-streamwise vortices formed in the near-wall

layer (Kaftori et al., 1994; Adrian et al., 2000; Tomkins and

Adrian, 2003). Their anisotropic dynamics are Reynolds-

number dependent. Sweeps from the outer layer toward

the wall induce strong variations of the wall-normal velocity.

The cross-channel correlation in the turbulent velocity field

is amplified by merging of near-wall small-scale structures

and their eruptions towards the outer region (Jiménez et al.

2004; Hutchins and Marusic, 2007; Toh and Itano., 2005).

It has been shown that LES without model may re-

produce accurately highly intermittent turbulent structures

near the wall. However this requires excessively expensive

grid resolution. Then for a high Reynolds number channel

flow, the LES at moderate resolution has to be combined

with a SGS model for the non-resolved turbulent motion.

The majority of SGS models are focused on simulation of

turbulent stresses generated by the non-resolved velocity

field (Meneveau and Katz, 2000; Domaradzki and Adams,

2002; Park and Mahesh, 2008). In these models the struc-

ture of subgrid flow is supposed to be independent of the

Reynolds number, i.e., to be not intermittent. Therefore

the approach recently proposed by Sabelnikov et al. (2007)

is focused directly on the stochastic modeling of the subgrid

acceleration (LES-SSAM).

It was shown, by Kolmogorov’s scaling, that, for a

given filter width Δ, the non-resolved acceleration may

be substantially greater than the resolved acceleration:

(akak)/(a′
ia

′
i) ≈ (η/Δ)2/3, where ak and a′

i represent re-

solved and non-resolved accelerations and η = L/Re
3/4
L is

the Kolmogorov’s length scale. This implies that in any

SGS model, which is aimed to introduce the intermittency

effects, the non-resolved acceleration must be a key variable.

This motivated us to set up a new stochastic model for the

subgrid acceleration of wall bounded flow. The aim of this

paper is to assess the capability of the new model to repro-

duce the near-wall behavior compared to a standard LES

and DNS.

LES-SSAM APPROACH AND MODEL FORMULATION

In the LES-SSAM framework of Sabelnikov et al. (2007),

it is consider that the total instantaneous acceleration, gov-

erned by the Navier-Stokes equations, can be represented by

the sum of two parts: ai = ai +a′
i. The first part represents

the spatially filtered total acceleration: ai = ∂ui
∂t

+
∂ukui
∂xk

,

and is equivalent, with spatial filtering of the Navier-Stokes

equations, to:

ai ≡ dui

dt
= −1

ρ

∂p

∂xi
+ νΔui

∂uk

∂xk
= 0 (1)

with ν the kinematic viscosity. The second part is associated

with the total acceleration in the residual field:

a′
i ≡
(

dui

dt

)′
= −1

ρ

∂p′

∂xi
+ νΔu′

i

∂u′
k

∂xk
= 0 (2)

where a′
i =

∂u′
i

∂t
+

∂ukui−ukui
∂xk

. Both equations need to be

modeled. In the LES-SSAM approach, eq. (1) is modeled

in the framework of the classical LES approach, and a′
i is

considered as a stochastic variable. The resulting model-

equation, which reconstructs an approximation for the non-

filtered velocity field, writes then as:

∂ûi

∂t
+ ûk

∂ûi

∂xk
= −1

ρ

∂p̂

∂xi

+
∂

∂xk
(ν + νt)

(

∂ûi

∂xk
+

∂ûk

∂xi

)

+ â′
i

∂ûk

∂xk
= 0 (3)

where •̂ represents a synthetic field and νturb is given by the

Smagorinsky subgrid model.

For further development of the LES-SSAM approach, we

propose a new model for the non-resolved acceleration â′
i.

We introduce the separation of variables for the non-resolved

acceleration â′
i . On the basis of our DNS for turbulent chan-

nel flow (see table 1) and experiences (Mordant et al. 2004;
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Lee et al., 2004; Mordant et al., 2002), |a|, the modulus of

the subgrid acceleration and ei its orientation, are two in-

dependent random variables, characterized by long memory

and rapid decorrelation, respectively. Then the non-resolved

acceleration is written as:

â′
i = |a|ei (4)

For |a|, our proposal is to emulate the modulus of the

non-resolved acceleration in the following form:

|a| = fΔu2
∗/ν (5)

where Δ is the characteristic cell size and u∗ the friction

velocity, u2
∗/ν ≡ ∂u

∂y
|wall; so Δu2

τ /ν will be considered as

a typical normal to wall velocity increment in the near to

wall region, and f is the subgrid frequency, considered as a

stochastic variable. The frequency f is supposed to have a

stochastic evolution from the wall to the outer flow driven

by the non-dimensional parameter τ defined as follows:

τ = −ln

(

h − y

h

)

(6)

where h is the channel half-width, and y is the wall distance

(y = 0 : τ = 0 and y → h : τ → ∞). The near-wall region

is characterized by strong velocity gradients (high values of

f), which decrease in mean toward the outer flow through

the highly intermittent boundary layer. Thereby we as-

sumed that with increasing of the normal distance from the

wall, the frequency f is changing by a random independent

multiplier α (0 < α < 1), governed by distribution q(α),
∫ 1

0
q(α)dα = 1, which is in principle unknown. In other

words, we apply the fragmentation stochastic process under

scaling symmetry for the frequency f . From Gorokhovski

and Saveliev (2008), we derive the following stochastic equa-

tion corresponding to this process:

df =
(

〈lnα〉 + 〈ln2α〉/2
)

fdτ +
√

〈ln2α〉/2fdW (τ) (7)

where 〈lnkα〉 =
∫ 1

0
q(α)lnkαdα ; k = 1, 2, and dW (τ) is the

Wiener process (〈dW (τ)〉 = 0 and 〈dW (τ)2〉 = dτ). In the

present study, parameters are chosen in the following form:

−〈lnα〉 = 〈ln2α〉 = Re
1/3
+ (8)

where Re+ is the Reynolds number, based on the friction

velocity u∗. The starting condition, τ = 0, for this stochas-

tic process (the first grid cell on the wall) is given as fol-

lows. We introduce the mean value of frequency at the wall

f+ = λ/u∗, where λ is determined, as a Taylor-like scale,

which can be estimated by the Kolmogorov’s scaling in the

framework of definitions of wall parameters. The Reynolds

number, based on friction velocity, is Re+ = u∗h/ν =

h/y0 ≈ Re
3/4
h

where y0 is the thickness of the viscous layer,

and Reh is the Reynolds number based on the center-line ve-

locity. One then yields: λ ≈ hRe
−1/2
h

≈ hRe
−2/3
+ . Similar

to Kolmogorov-Oboukhov 62, the starting condition for the

random path given by eq. (7) is sampled from the stationary

log-normal distribution of f/f+:

P0 (f/f+) =
f+

f
√

2πσ2
e
−

(ln(f/f+) − μ)2

2σ2 (9)

If σ2 = ln 2 and μ = − 1
2
σ2, then 〈f〉 = (〈f2〉 − 〈f〉2)1/2 =

f+. This stochastic process will relax f from a log-normal

distribution at the wall (τ = 0) to the power distribution as
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Figure 1: a: Distribution of f/f+ from SSAM (cross) and

comparison with DNS (line) at Re+ = 590, for several dis-

tances from the wall. b: Distribution of θ for small scale

acceleration from DNS (line) and from SSAM (cross), for

Re+ = 590, and for several distances from the wall (y+ = 3,

y+ = 10 and y+ = 30).

the distance to the wall increases (τ → ∞). The evolution

through the channel, for distributions of the frequency pre-

dicted by the stochastic equation can be compared with the

evolution of the frequency computed from DNS, via eq. (5).

According to fig. 1a SSAM ensures a good relaxation of the

frequency, as the distance to the wall increases.

In order to emulate the orientation vector of the subgrid

scale acceleration, ei, we consider a random walk evolving

on the surface of a sphere of unity radius. The direction of

this vector is defined by two stochastic variables which are

longitude φ and latitude θ:

{

ex = cos(θ) cos(φ)

ey = sin(θ)

ez = cos(θ) sin(φ)

(10)

The φ angle characterizes the direction in the streamwise-

spanwise (x, z) plan, and the other one, θ, defines the ori-

entation in relation to the normal to wall direction (θ = 0

means acceleration is parallel to the wall, and θ = ±π/2

means acceleration is normal to the wall), fig 2. It is seen

from DNS (fig. 1b) that the orientation vector relaxes toward

isotropy with increasing distance from the wall. In the case

of full isotropy, the distributions of θ and φ are respectively

given by Pisotropic(θ) = cos(θ)/2 and Pisotropic(φ) = π/2.

In order to represent this tendency towards isotropy, we

implement the Kubo oscilator with a real coefficient α as
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Figure 2: Coordinate system.

random motion on the sphere. This motion will defines the

evolution of the unit vector ei. Each position increment of

the random walk is given by ζ = αdW (τ), with :

α =

√

ln Re+

2
(11)

and the direction β at each time step is chosen randomly

from the uniform distribution. The position increment (dθ =

θi+1 − θi, dφ = φi+1 − φi) is given according to:

θi+1 = sin−1(sin θi cos ζ + cos θi sin ζ cos β)

dφ = arg(γ)

�(γ) = sin β sin ζ cos θi

�(γ) = cos ζ − sin θi sin θi+1

(12)

where γ is a complex number and �(γ) and �(γ) are its real

and imaginary part, respectively. As τ increases the random

walk covers all the surface of the sphere. This process is

initiated on the wall with:
{

Pθ(θ, τ = 0) = δ(θ)

Pφ(φ, τ = 0) = 1/2π if 0 ≤ φ < 2π
(13)

where Pθ and Pφ are the distribution of θ and φ respectively,

and δ is the Dirac distribution. The initial condition (13) is

coherent with DNS. On fig. 1b we present the evolution of

the distribution of θ given by eq. 6, eq. 11, eq. 12 and eq. 13

and the one computed from the small-scale acceleration of

DNS. Good agreement with the DNS is achieved.

NUMERICAL RESULTS AND DISCUSSION

In order to make a posteriori tests of this subgrid scale

model for acceleration we ran simulations of a pressure

driven turbulent channel flow for three Reynolds numbers:

Re+ = 590, 1000 et 2000. We used a pseudo-spectral

method with integration in time by the explicit Adam-

Basforth algorithm for convective terms, and by the semi-

implicit algorithm for diffusion terms. A rotational form is

used for non-linear terms in order to ensure the conservation

of energy. Periodic boundary conditions were applied along

the streamwise (x) and the spanwise (z) directions, whereas

the no-slip boundary condition was imposed on the walls.

The results of LES-SSAM tests have been compared with

standard LES and DNS. We used our own DNS data as

well as the DNS data from Moser et al. (1999) and from

Hoyas and Jiménez (2008). For LES and LES-SSAM simu-

lations the classical Smagorinsky model with a wall damp-

ing function for the turbulent viscosity has been applied

(Sagaut, 2002):

νturb = (CsΔfV D)2|S|
|S| = (2SijSij)

1/2

fV D = 1 − e−y/A

(14)

with Cs the Smagorinsky constant, Δ = (Δx×Δy×Δz)1/3

the typical cell size, Sij = 1
2

(

∂ui
∂xj

+
∂uj

∂xi

)

the resolved

rate of strain tensor, fV D the Van Driest function and A

the constant controlling the damping of fV D. The con-

stant A is computed in order to fulfill the suggestion of

Shur et al. (2008) for the subgrid length-scale � definition:

� = min(y, Δ), y is the distance to the nearest wall. We

choose A such that ΔfV D ∼ min(y, Δ) by least square

regression: d
dA

[
∑

i

(

(min(yi, Δi))
2 − (ΔifV D,i)

2
)]

= 0,

where the subscript i denote the ith cell from the wall. The

parameters used for these simulations are summarized in ta-

ble 1.

Note that in this code, Reynolds number are imposed

via the setting of ν and − 1
ρ

∂P
∂xi

(the mean pressure gra-

dient). One may use Dean’s correlation (Dean, 1978):

ν = 0.110UchRe−1.1296
+ and − 1

ρ
∂P
∂xi

= Re2
+ν2/h3, with

Uc the center-line velocity, to choose suitable values. As

shown in table 1, the Reynolds numbers computed from

LES-SSAM are closer to the DNS than the ones computed

by LES. For a given set of parameters (ν and − 1
ρ

∂P
∂xi

), LES-

SSAM improves both center-line velocity and mass flow rate

estimations.

For simplicity reasons, in the following, we only present

the LES-SSAM, LES and DNS comparison for simulations

with a 64 × 65 × 64 grid for the three Reynolds numbers.

It should be noted that for finer resolutions the differences

between LES-SSAM and standard LES are less pronounced,

but still present.

Fig. 3 shows evolution of the mean velocity across the

channel. As pointed out in table 1 it is clear that LES-

SSAM improves mean flow rate estimation as well as center-

line velocity prediction. Moreover the mean velocity profile

follows the logarithmic law contrary to LES.

On fig. 4 profiles of the standard deviation for stream-

wise, spanwise and normal to wall velocities are also pre-

sented. Standard deviations of streamwise velocity are no-

tably improved. The peak position obtained by LES-SSAM

is closer to the DNS than the one obtained with LES. For

the spanwise velocity standard deviation the improvement

is less visible. However, note that the shape of the profile

obtained by LES-SSAM is closer to the DNS one, even if

it is overestimated. Finally, the normal to the wall velocity

standard deviation is slightly improved in comparison with

LES.

Fig. 5 illustrates the computation of turbulent and vis-

cous stresses, τturb = −ρ〈u′v′〉 and τvisc = −ρν〈 ∂u
∂y

〉, re-

spectively (〈.〉 denotes ensemble average). The results are

presented as ratios τturb/(τturb + τvisc) and τvisc/(τturb +

τvisc). Here again the advantage of the LES-SSAM approach

versus the classical LES is explicitly seen, and can be inter-

preted as a better estimation of momentum fluxes in the

normal to the wall direction.

Velocity spectra are shown on fig. 6. From this figure we

can see that the anomalous small scale (high wave number)

damping inherent to LES can be reduced by LES-SSAM.

Fig. 7 represents the evolution of the longitudinal autocor-

relation coefficient for the streamwise velocity component

along the channel. Improvement of the decorrelation length

can be seen, indicating that integral length scale computed
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Table 1: Summery of parameters used for numerical simulations

Name Re+ Rec Nx × Ny × Nz Lx × Ly × Lz Δx+ × Δy+ × Δz+ Cs A/h

DNS 587 12490 384 × 257 × 384 3
2
πh × 2h × 3

4
πh 7.2 × (0.04 ∼ 7.2) × 3.6 - -

DNS1 587 12547 384 × 257 × 384 2πh × 2h × πh 9.7 × (0.04 ∼ 7.2) × 4.8 - -

LES 587 14160 64 × 65 × 64 3πh × 2h × πh 87 × (0.71 ∼ 29) × 29 0.16 0.015

LES-SSAM 587 12760 64 × 65 × 64 3πh × 2h × πh 87 × (0.71 ∼ 29) × 29 0.16 0.015

DNS 1000 22250 512 × 385 × 512 4
3
πh × 2h × 2

3
πh 8.2 × (0.03 ∼ 8.3) × 4.1 - -

DNS2 934 20960 3072 × 385 × 2304 8πh × 2h × 3πh 7.6 × (0.06 ∼ 7.6) × 3.8 - -

LES 1000 25430 96 × 97 × 96 3πh × 2h × πh 99 × (0.53 ∼ 33) × 33 0.16 0.009

LES-SSAM 1000 23380 96 × 97 × 96 3πh × 2h × πh 99 × (0.53 ∼ 33) × 33 0.16 0.009

LES 1000 25500 64 × 65 × 64 3πh × 2h × πh 147 × (1.2 ∼ 49) × 49 0.2 0.015

LES-SSAM 1000 23700 64 × 65 × 64 3πh × 2h × πh 147 × (1.2 ∼ 49) × 49 0.2 0.015

DNS2 2003 48680 6144 × 633 × 4608 8πh × 2h × 3πh 8.2 × 8.9 × 4.1 - -

LES 2000 49350 128 × 129 × 128 3πh × 2h × πh 147 × (0.60 ∼ 49) × 49 0.16 0.006

LES-SSAM 2000 48950 128 × 129 × 128 3πh × 2h × πh 147 × (0.60 ∼ 49) × 49 0.16 0.006

LES 2000 52640 64 × 65 × 64 3πh × 2h × πh 295 × (2.4 ∼ 98) × 98 0.2 0.015

LES-SSAM 2000 49050 64 × 65 × 64 3πh × 2h × πh 295 × (2.4 ∼ 98) × 98 0.2 0.015

1Moser et al. (1999)
2Hoyas and Jiménez (2008)
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Figure 3: Streamwise mean velocity, for Re+ = 590, Re+ =

1000 and Re+ = 2000 from bottom to top, respectively,

shifted by 10 wall units upward. Square: LES; cross: LES-

SSAM; dash: DNS (only for Re+ = 590 and Re+ = 1000);

dots: DNS from Moser et al. (1999) for Re+ = 590 and from

Hoyas and Jiménez (2008) for Re+ = 1000 and Re+ = 2000.

by LES-SSAM are closer to DNS than in the classical LES.

This result is mainly due to the fact that decorrelation is en-

sured by small scale fluctuations modelled with LESS-SSAM

as seen by the spectra on fig. 6.

From figure 8 it can be seen that in agreement with

the DNS, the distributions for components of the accelera-

tion, ai, obtained by LES-SSAM, present stretched tails, as

a manifestation of intermittency, while these distributions

from LES stay close to Gaussianity.

CONCLUSION

In the framework of the LES-SSAM approach, a new SGS

model is proposed in order to represent the intermittency

effects in the near-wall region of a high-Reynolds number

channel flow. The assessment of this model is performed by

comparison of computations with DNS data (Re+ = 590,

1000 and 2000) and standard LES. The comparisons show

explicitly the improvements of predictions provided by the

new model.
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Figure 4: Standard deviation of streamwise (u), spanwise

(w) and normal (v) velocity (in wall unites), for Re+ =

590, Re+ = 1000 and Re+ = 2000, from top to bottom,

respectively. Square: LES; cross: LES-SSAM; dash: DNS

(only for Re+ = 590 and Re+ = 1000); dots: DNS from

Moser et al. (1999) for Re+ = 590 and from Hoyas and

Jiménez (2008) for Re+ = 1000 and Re+ = 2000.
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SSAM; dash: DNS.
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Figure 6: Normalized longitudinal 1-D spectra of normal to

wall velocity for y+ = 20 and Re+ = 1000. Square: LES;

cross: LES-SSAM; dash: DNS; dots: DNS from Hoyas and

Jiménez (2008).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000  1500  2000

ρ u
u

Δx+

y+=5

Figure 7: Longitudinal autocorrelation of streamwise veloc-

ity at y+ = 5 and Re+ = 1000. Square: LES; cross: LES-

SSAM; dash: DNS.
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Figure 8: Distribution of spanwise acceleration at y+ = 5 for

Re+ = 1000. Square: LES; cross: LES-SSAM; dash: DNS.

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

910

미정댁
메인/컨텐츠




