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ABSTRACT

The subfilter scalar variance is an important quantity in

conserved scalar models for large eddy simulation of turbu-

lent combustion, where it indicates the degree of small scale

mixing between fuel and oxidizer. Simulation predictions of

chemical species concentrations are sensitive to the accuracy

of the variance model, including the numerical accuracy with

which the model is evaluated. A priori analysis shows that

both dynamic algebraic models and transport equation mod-

els for the variance incur significant numerical error when

calculated using finite difference methods. Furthermore, the

amount of error cannot be reliably characterized by the order

of accuracy of the finite difference scheme.

Errors in the filtered scalar field also contribute to the

error in the variance estimation. In particular, the variance

values predicted by a dynamic model are highly dependent

on the evolution of the smallest resolved scales, which in turn

are greatly influenced by the numerical treatment of the dif-

fusive term. In a posteriori tests, a simple expansion of the

term is found to improve the accuracy of the scalar evolution

and, thereby, increase the accuracy of dynamic model pre-

dictions of the variance. In contrast to the a priori results,

the combined numerical errors of the scalar equation and

variance model evaluation cause the magnitude of modeled

variance values to increase as the order of accuracy of the

finite difference scheme decreases.

INTRODUCTION

Large eddy simulation (LES) has emerged as an impor-

tant tool for modeling turbulent combustion. Large scale

motions are nominally resolved in LES, while small scales

processes must be described using models. Although com-

bustion itself takes place at the smallest scales, the combus-

tion rate is limited by the large-scale mixing process, which

is predicted well by LES. It has been argued that this factor

increases the over-all accuracy of LES methods relative to

RANS-based approaches. With that said, proper represen-

tation of small scale mixing is essential for accurate LES of

combustion.

In LES, the true flow field is separated into a filtered

field (denoted by · ) and a subfilter field using a lowpass

filtering kernel. Combustion is typically modeled using mix-

ture fraction, which is a conserved scalar. Specifically, the

filtered mixture fraction and the variance of mixture frac-

tion are needed to prescribe the subfilter thermochemical

state.The subfilter variance for mixture fraction Z is then

defined as Z′2 = Z2−Z
2
, and needs to be modeled since Z2

is not generally available from the LES computation. Sev-

eral models for the variance have been proposed, prompting

comparisons of these models in terms of their ability to cap-

ture the physics of small scale mixing. When the results of

these idealized analyses are applied to actual simulations, it

is implicitly assumed that numerical errors are a secondary

effect. This is, from the start, a tenuous assumption since

the nonlinearity of combustion models means that even small

errors in the variance can produce large errors in species con-

centrations. Additionally, in practical applications, LES is

performed using grid-based filtering, so that the smallest fil-

tered scales are poorly resolved by the computational mesh.

These scales are important in determining modeled variance

values, as described below, suggesting that the effects of nu-
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merical error are critical.

Variance models can be grouped into two major cate-

gories: algebraic models and transport equation based mod-

els. Algebraic models assume that the local production and

dissipation of scalar energy are always in balance, implying

that physical transport of energy can be neglected (Balarac

et al., 2008). In this work, the latter two models are consid-

ered. Here, the variance is modeled using a gradient-based

scaling law (Pierce and Moin, 1998):

Z′2 = CΔ2∇Z · ∇Z, (1)

where Δ is the filter-width and the model constant C is

evaluated using a dynamic procedure. The coefficient is

determined as a ratio between the Leonard term, which rep-

resents the scalar energy present at length scales between the

filter scale and twice the filter scale, and a term that depends

on gradients of the filtered scalar. The latter term takes

slightly different forms in the original (Pierce and Moin,

1998) and modified (Balarac et al., 2008) dynamic models.

While the local equilibrium assumption is questionable in

even homogeneous isotropic flows, their relative ease of im-

plementation has made these models popular. If the local

equilibrium assumption has to be relaxed, then a transport

equation for variance must be directly solved. Here, two

choices exist: either the variance transport equation (VTE)

or the second moment (Z2) transport equation (STE) may

be used.

As a first step to understanding the consequences of nu-

merical implementation on the aforementioned models, a

priori tests were carried out using DNS data from a pseu-

dospectral simulation of scalar mixing in forced isotropic tur-

bulence. The findings of this analysis, which are summarized

below, show that multiple sources of error within the sub-

filter model calculation can interact to produce unexpected

outcomes. Numerical errors in the variance prediction can

be large, even when sixth order accurate finite difference

schemes are used. In an actual simulation, the numerical

evolution of the scalar field also contributes to the error in

the variance prediction. Thus, a posteriori tests were per-

formed to complement and extend the a priori results. These

show that proper treatment of the diffusive term of the fil-

tered scalar treatment is required to avoid an accumulation

of error near the filter cut-off scale, with significant impact

on the variance prediction.

A PRIORI RESULTS

In the following a priori analysis of variance models, the

effects of finite difference evaluation were emulated through

the modified wavenumber representation of finite difference

schemes (Kravchenko and Moin, 1997) and compared to

model evaluations using the true wavenumber. Throughout,

second order central (CD-2), fourth order central (CD-4)

and sixth order Padé (P-6) schemes are considered.

Dynamic Models

The most overt source of error in the dynamic model

(Eq. 1) is the evaluation of the gradient term. It is well

known that finite difference approximations grossly under-

predict the gradients in a turbulent flow. Ostensibly, the

dynamic model should then underpredict the variance. How-

ever, the dynamic procedure used to compute the model co-

efficient also incurs numerical errors. These errors lead to an

overprediction of the model coefficient relative to value de-

termined by exact evaluation of the dynamic closure. Fig. 1

0 20 40 60 80 100 120 140
0.1

0.15

0.2

0.25

0.3

0.35

Δ/η

C

(a) Original dynamic model.
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(b) Modified dynamic model.

Figure 1: Dynamic model coefficient, computed using en-

semble averaging over the entire domain, as a function of

filter size and numerical scheme: ( ) spectral ( )

CD-2 ( ) CD-4 and ( ) P-6

shows the original and modified dynamic model coefficients

evaluated from DNS using the three different finite differ-

ence approximations. It can be seen that the second order

central scheme, which is the least accurate of the schemes,

predicts the highest model coefficient for all filter sizes con-

sidered. This overprediction partially offsets the error in the

gradient estimation, thereby reducing the errors in the pre-

diction of variance (Fig. 2(a)). It should be noticed that for

the original dynamic model the use of finite differences ac-

tually changes the trends exhibited by the coefficient, while

the effect on the modified dynamic model is limited to a

scaling of the coefficient value. This difference is reflected in

the model errors. Over a significant range of filter widths,

the presence of numerical error actually improves the predic-

tions of the original dynamic model. The modified dynamic

model shows a more consistent behavior, in that increasing

the accuracy of the numerical scheme increases the accuracy

of the model over the full range of filter widths.

Transport Equation Models

The second portion of a priori tests focus on transport

equation based models. An obvious choice is the VTE model
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(a) Original dynamic model.
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(b) Modified dynamic model.

Figure 2: Quadratic errors of dynamic models 〈(Z′2
model −

Z′2)2〉/〈Z′2〉2 for ( ) spectral ( ) CD-2 ( )

CD-4, and ( ) P-6 schemes.

which uses a transport equation for the variance. An aspect

of the VTE that has received little attention originates in

its derivation. Since Z′2 is not a conserved quantity, the

VTE must be developed by manipulation of the Z equation

through the chain rule rule. While this approach is ana-

lytically valid, it can be numerically problematic. For this

discussion, we define the quantities

P1 = 2Z
δujZ

δxj
(2)

P2 =
δujZ

2

δxj
(3)

and

Q1 = 2Z
δ

δxj

"

(D + Dt)
δZ

δxj

#

(4)

Q2 =
δ

δxj

"

(D + Dt)
δZ

2

δxj

#

− 2 (D + Dt)
δZ

δxj

δZ

δxj
(5)

where δ/δxj refers to numerical approximation of the deriva-

tives and Dt denotes the eddy diffusivity. Ideally, P1 = P2

and Q1 = Q2. Since it is well known that these discrete

representations do not follow the calculus of continuous vari-

ables, we at least expect small differences between the two

representations when implementing the VTE. Instead, the

errors associated with these approximations have a strong

bias, as evidenced by the conditional means 〈P2|P1〉 and

〈Q2|Q1〉. For all three schemes considered, the amount of er-

ror is quite similar. Fig. 3(a) shows that the magnitude of P1

is always underpredicted by representation in the form P2.

This implies that the large scale redistribution of variance is

underpredicted by the VTE model, which undermines a ma-

jor argument for this model’s use. Turning to the Q terms,

it can be seen that the conditional mean 〈Q2|Q1〉 lies above

the diagonal, indicating that Q2 is overpredicted. This find-

ing holds for both a constant or dynamically modeled value

of Dt; the latter case is depicted in Fig. 3(b). Higher values

of Q2 lead to higher values of Z′2 and, consequently, lower

values of the variance.

These results represent errors occurring in a single eval-

uation of the model. In an actual simulation the VTE must

be solved at each time step, allowing for an accumulation of

error. In fact, the buildup of errors could be so severe that

the variance predicted by the VTE approach could differ by

several orders of magnitude from the true variance.

It should be noted that the variance transport equation

is connected to the equation for the second moment of the

scalar through the relationship

dZ′2

dt
=

dZ2

dt
− dZ

2

dt
. (6)

The STE model thus avoids the chain rule manipulations

required to develop the equation for Z
2
.

A POSTERIORI RESULTS

To address the importance of errors in the evolution of

the filtered scalar field for subfilter scalar modeling, a novel

methodology was used to conduct a posteriori tests. A

pseudospectral code for simulation of homogeneous isotropic

turbulence was modified to solve the governing equation for

the filtered scalar field with exact and modified wavenum-

bers (Kravchenko and Moin, 1997). A second order central,

fourth order central, and a sixth order central Padé scheme

were considered for the approximation of first and second

order derivatives in the convection and diffusion operators.

A ratio of filter width to grid spacing of one is used through-

out. A DNS velocity field was filtered at each time step to

supply the scalar convective velocity. Models for the eddy

diffusivity (Moin et al., 1991) and variance (Balarac et al.,

2008) were computed with the same scheme used to evolve

the filtered scalar. Because of the differences in their evolu-

tion, each scalar field constitutes a separate realization and

only the statistical properties of the scalar fields should be

compared.

The accuracy of the diffusion operator was found to be

a critical factor in the prediction of the variance using the

modified dynamic model. The filtered scalar transport equa-

tion is frequently solved in the form

∂Z

∂t
+ ui

∂Z

∂xi
=

∂

∂xi

"

(D + Dt)
∂Z

∂xi

#

(7)

which will be called the conventional formulation of the

equation.

However, as shown in Figure 4, second derivative terms

are approximated more accurately by a single application

of a second derivative scheme than by two applications of a
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Figure 3: Conditional means of variance transport terms,

computed at a filter width of 32η using a variety of numerical

schemes: ( ) spectral ( ) CD-2 ( ) CD-4,

and ( ) P-6.

first derivative scheme. This suggests that Equation 7 be

written in a modified formulation as

∂Z

∂t
+ ui

∂Z

∂xi
=

∂Dt

∂xi

∂Z

∂xi
+ (D + Dt)

∂2Z

∂x2
i

(8)

For comparison, a simulation was performed using an

exact treatment of the diffusive terms with finite difference

evaluation of the convective term. Fig. 5 compares the evo-

lution of the filtered scalar spectra for the three cases. The

choice of numerical method is relatively less consequential

for the large scales of the filtered scalar field, while the effect

on scales near the filter cut-off can be dramatic. Scalar evo-

lution using Eq. 8 agrees much better with evolution using a

spectrally accurate diffusive term. Inadequate diffusion al-

lows an accumulation of energy at the small resolved scales,

with a two-fold effect on the variance model.

First, the true values of the quantity ∇Z · ∇Z are in-

creased. Note that the variance model is based on this

gradient term (Eq. 1). In the case of the conventional for-

mulation, the increase is great enough to remain significant

when ∇Z ·∇Z is evaluated with finite difference methods and
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Figure 4: Modified wave numbers for single second deriva-

tive operator (open symbols) and two applications of a first

derivative operator (filled symbols) for ∇ CD-2 � CD-4, and

© P-6 schemes

its value is greatest for the second order scheme, followed by

fourth order, sixth order, and spectral schemes. However, for

the modified formulation the difference is not so strong, and

there is not a consistent ordering of the schemes in terms of

which predicts the highest values for the quantity. Second,

the value of the model coefficient increases due to higher val-

ues of the Leonard term. For the conventional formulation,

the increase in the Leonard term more than compensates for

increases in the gradient term of the model closure, as shown

in Fig. 6. These two factors combine for the scalar fields

evolved with Eq. 7 to predict markedly higher values of the

variance for lower order schemes. In Fig. 7(a) the mode of

the variance distribution computed with second order meth-

ods is over an order of magnitude larger than the mode

of the spectral-accuracy variance distribution, and even the

sixth order scheme is in poor agreement. Lower order ap-

proaches still predict higher variance values for the scalar

fields evolved with Eq. 8 but because the disparity in the

gradient predictions and coefficient values is less, the differ-

ences between the variance values are smaller. In particular,

Fig. 7(b) shows that there is good agreement between the

predictions of the spectral and sixth order Padé methods.

Still closer correspondence in the results for all schemes is

achieved by the exact diffusion operator case (Fig. 7(c)).

Clearly, implementations of the diffusion operator that

remain effective at all wavenumbers, such as the expanded

formulation considered here, help to reduce inconsistencies

in variance prediction due to numerical errors. However, it

must be noted that some excess scalar energy serves to off-

set numerical errors that occur in evaluating the dynamic

model. In simulations, it is common to use discretizations

of the convective term which introduce additional dissipa-

tion. This practice could, potentially, degrade the over-all

accuracy of the variance model by removing too much en-

ergy.

CONCLUSIONS

The results of a priori and a posteriori analyses show

that numerical error can have first-order effects on variance

modeling. In many cases, the use of higher-order finite dif-
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Figure 5: Filtered scalar (Z) spectra at normalized time

τ = 1.4 using (a) Eq. 7, (b) Eq. 8, and (c) exactly calculated

diffusion. Schemes shown are ( ) CD-2, ( ) CD-

4, ( ) P-6, and ( ) spectral.
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Figure 6: Evolution of model coefficient as a function of nor-

malized time for ( a posteriori analysis using (a) Eq. 7 and

(b) Eq. 8 . Arrow indicates increasing accuracy of scheme:

CD-2, CD-4, P-6, and spectral.

ference schemes produces relatively minor improvements in

modeling accuracy. However, certain choices of model im-

plementation can reduce error with little or no increase in

computational effort. The accuracy of model predictions is

contingent on the accuracy of the filtered scalar field from

which the model is calculated. The smallest scales of the fil-

tered field, which are critical to the prediction of the dynamic

model coefficient, are sensitive to errors in the diffusion op-

erator. The accuracy of the evolution of these scales can

be increased by solving the scalar transport equation in the

form of Eq. 8.

Given a filtered scalar field, finite difference methods un-

derpredict the quantity ∇Z · ∇Z in the algebraic dynamic

model for the variance. The underprediction of that term is

partially canceled by overprediction of the dynamic coeffi-

cient, again due to underprediction of gradients. The error

of the modified dynamic model (Balarac et al., 2008), unlike

that of the original dynamic model (Pierce and Moin, 1998),

is consistently reduced by increasing the order of accuracy of

the scheme used to calculate the model, suggesting its use in
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