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ABSTRACT

The anisotropy properties of homogeneous turbulence

with mean shear and system rotation are studied using both

conventional and wavelet-based anisotropy measures. The

study is based on a series of nine direct numerical simula-

tions in which the rotation ratio f/S of Coriolis parameter

to shear rate is varied. The presence of rotation stabi-

lizes the flow, except for a narrow range of rotation ratios

0 < f/S < 1. The main mechanism for the destabiliza-

tion is an increased turbulence production due to increased

anisotropy. This anisotropy at large and small scales is

quantified by applying conventional measures, such as the

Reynolds stress and the dissipation rate anisotropy tensors,

respectively. Recently introduced directional wavelet based

measures are also applied and compared with the classical

ones.

INTRODUCTION

Rotation and shear are ubiquitous features of many geo-

physical flows and engineering applications (e.g. Miesch,

2005). The prototypical flow studied here has constant ver-

tical shear S = ∂U1/∂x2. System rotation with constant

Coriolis parameter f = 2Ω is considered and the rotation

axis is perpendicular to the plane of shear. It is there-

fore directed into the spanwise direction x3 and parallel or

anti-parallel to the mean flow vorticity. The Cartesian co-

ordinates x = (x1, x2, x3) refer to the streamwise, vertical,

and spanwise directions, respectively. A schematic of the

mean flow configuration is shown in figure 1.

In previous studies (Bradshaw, 1969; Tritton, 1992) the

effect of rotation was found to be destabilizing in the anti-

parallel configuration with 0 < f/S < 1 and stabilizing

otherwise. Comprehensive investigations of this flow include

the work by Salhi and Cambon (1997), Brethouwer (2005)

and Jacobitz et al. (2008). Linear theory has been used by

Salhi (2002) to investigate the similarities of rotation and

stratification in such flows. An overview on homogeneous

turbulence dynamics including shear flows can be found in

a recent monograph by Sagaut and Cambon (2008).

The aim of this study is an investigation of the anisotropy

properties of homogeneous turbulence with shear and ro-

tation. In particular, well established anisotropy mea-

sures, such as the Reynolds stress and dissipation rate

anisotropy tensors, are compared to wavelet-based measures

of anisotropy recently introduced by Bos et al. (2007). Di-

rectional energies and the corresponding spatial fluctuations

can be quantified using the orthogonal wavelet decomposi-

tion. The scale dependent directional flatness allows further-

more to quantify the intermittency of the flows. Therewith

the influence of the rotation rate on the directional statistics

and the flow intermittency can be analyzed.

DIRECT NUMERICAL SIMULATIONS

The direct numerical simulations performed here are

based on the continuity equation for an incompressible fluid

and the unsteady three-dimensional Navier-Stokes equation.

In the direct numerical approach, all dynamically important

scales of the velocity field are resolved. The equations are

solved in a frame of reference moving with the mean flow

(Rogallo, 1981). This approach allows the application of pe-

riodic boundary conditions for the fluctuating components

of the velocity field. A spectral collocation method is used

for the spatial discretization and the solution is advanced

in time with a fourth-order Runge-Kutta scheme. The sim-

ulations are performed on a parallel computer using a grid

with 256 × 256 × 256 points. The simulations analyzed in

this study are identical to the ones reported in Jacobitz et

al. (2008).

In the following, results of nine simulations of rotating

sheared turbulence are presented. In the simulations, the ro-
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Figure 1: Schematic of the mean flow configuration with

uniform vertical shear S = ∂U1/∂x2 and rotation f = 2Ω.

Note that this schematic shows a parallel configuration with

negative rotation ratio f/S.

tation ratio f/S was varied from −10 to 10. Negative values

of f/S correspond to the parallel configuration and positive

values correspond to the anti-parallel configuration. All sim-

ulations are initialized with isotropic turbulence fields. The

initial Taylor microscale Reynolds number Reλ = 45 and

the initial shear number SK/ε = 2 are matched in all cases.

The Reynolds number reaches values as high as Reλ = 120

and the shear number assumes a value of about SK/ε = 6

in the simulations.

RESULTS

In this section, first the turbulence evolution is discussed.

Then the anisotropy properties of the turbulence are char-

acterized using well-established measures. Finally, wavelet-

based measures are used to obtain further information about

the anisotropy properties of homogeneous turbulence with

mean shear and system rotation.

Turbulence Evolution

Figure 2 shows the evolution of the turbulent kinetic

energy K for a series of simulations in which the rotation

ratio f/S is varied. Due to the isotropic initial conditions,

the turbulent kinetic energy first decays. The non-rotating

case with f/S = 0 shows eventual exponential growth of

K. For moderate rotation ratios, the anti-parallel case with

f/S = +0.5 leads to strong growth of the turbulent kinetic

energy, while the parallel case with f/S = −0.5 results in

decay of K. For strong rotation ratios, however, both the

anti-parallel case with f/S = +10 and the parallel case

with f/S = −10 lead to strong decay of K due to the

importance of linear effects. These observations are in agree-

ment with previous results (Bradshaw, 1969; Tritton, 1992;

Brethouwer, 2005).

The transport equation for the turbulent kinetic energy

can be written in the following form:

γ =
1

SK

dK

dt
=

P

SK
− ε

SK
(1)

Here γ is the growth rate of the turbulent kinetic energy,

P/SK the normalized production rate, and ε/SK the nor-

malized dissipation rate. The dependence of the turbulence
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Figure 2: Evolution of the turbulent kinetic energy K in

non-dimensional time St for different rotation ratios f/S.
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Figure 3: Dependence of the growth rate γ, normalized pro-

duction P/SK, and normalized dissipation ε/SK on the

rotation ratio f/S at non-dimensional time St = 5.

growth rate γ on the rotation ratio f/S is shown in fig-

ure 3 at non-dimensional time St = 5. Positive values of

γ correspond to growth of the turbulent kinetic energy K

and negative values of γ correspond to decay of K. In ac-

cordance with previous work the anti-parallel configuration

with 0 < f/S < 1 results in a destabilization of the flow,

while other parameter ranges of the rotation ratio lead to

a stabilization of the turbulence. Both normalized produc-

tion P/SK and normalized dissipation ε/SK contribute to

the growth rate γ. While the normalized dissipation rate

remains relatively unaffected by a variation of the rotation

ratio, the normalized production rate strongly increases in

the anti-parallel case with 0 < f/S < 1, resulting in the

strong increase in turbulence growth.

It was found from volume visualization of vortical struc-

tures that the dependence of the growth rate γ on the

rotation ratio f/S directly follows the dependence of the

inclination angle α on f/S. The angle α describes the incli-

nation of vortical structures in the vertical direction to the

downstream direction. A case with strongly growing tur-

bulent kinetic energy K is characterized by more strongly

inclined vortical structures and a decaying case is charac-

terized by a smaller inclination angle α. A more detailed

discussion of the inclination angle α can be found in Jacob-

itz et al. (2008).
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Figure 4: Dependence of the diagonal components of the

Reynolds stress anisotropy tensor bαβ on the rotation ratio

f/S at non-dimensional time St = 5.
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Figure 5: Dependence of the off-diagonal components of the

Reynolds stress anisotropy tensor bαβ on the rotation ratio

f/S at non-dimensional time St = 5.

Conventional Anisotropy Measures

Two conventional measures for the anisotropy properties

of turbulent flow are computed from the direct numerical

simulation data. The Reynolds stress anisotropy tensor bαβ

is considered to describe the large scale anisotropy proper-

ties:

bαβ =
uαuβ

2K
− 1

3
δαβ (2)

Figure 4 shows the dependence of the diagonal components

of the Reynolds shear stress anisotropy tensor bαβ on the

rotation ratio f/S at non-dimensional time St = 5. The

diagonal components of bαβ correspond to the distribution

of energy on the velocity components. For most rotation ra-

tios, an ordering b11 > b33 > b22, or streamwise > spanwise

> vertical, is observed. Only in the anti-parallel cases with

0 < f/S < 1 this ordering is changed to b22 > b33 > b11,

or vertical > spanwise > streamwise. The off-diagonal com-

ponents of bαβ are shown in figure 5. Due to the symmetry

of the flow, the components b13 and b23 remain small. The

magnitude of the component b12 is largest for f/S = +0.5,

corresponding to the strongest growth of the turbulent ki-

netic energy K. Note that P/SK = −2b12, relating the

normalized turbulence production rate to the anisotropy fea-

tures of the flow.

The dissipation rate anisotropy tensor eαβ is defined in a
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Figure 6: Dependence of the diagonal components of the

dissipation rate anisotropy tensor eαβ on the rotation ratio

f/S at non-dimensional time St = 5.
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Figure 7: Dependence of the off-diagonal components of the

dissipation rate anisotropy tensor eαβ on the rotation ratio

f/S at non-dimensional time St = 5.

similar manner to describe the small scale anisotropy prop-

erties:

eαβ =
ν ∂uα

∂xk

∂uβ

∂xk

2ε
− 1

3
δαβ (3)

Figure 6 shows the dependence of the diagonal components

of the dissipation rate anisotropy tensor eαβ on the ro-

tation ratio f/S at non-dimensional time St = 5. Both

the streamwise e11 and spanwise e33 components generally

show a surplus, while the vertical component e22 shows a

deficit. Only in the strongly growing case with rotation ra-

tio f/S = 0.5, the ordering is altered. The off-diagonal

components of eαβ are shown in figure 7. Again only the

e12 component is non-zero. Overall, the components of the

dissipation rate anisotropy tensor eαβ follow closely the com-

ponents of the Reynolds stress anisotropy tensor bαβ . The

main drawback of the dissipation rate anisotropy tensor is

the summation over all three gradients of velocity in each

component. It is therefore not possible to capture additional

directional information about this flow not already described

in the Reynolds stress anisotropy tensor.

In order to gain more understanding of directional infor-

mation contained in the velocity gradients, the contribution

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

787

미정댁
메인/컨텐츠



of each gradient to the overall dissipation rate is considered:

εα,β =
ν ∂uα

∂xβ

∂uα
∂xβ

2ε
(4)

No summation is implied over the velocity components of the

spatial derivatives. The top row in figure 8 shows the depen-

dence of εα,β on the rotation ratio f/S at non-dimensional

time St = 5. The left figure shows the three gradients of

the streamwise velocity component ε1,β . For most values of

the rotation ratio, the vertical component is the largest. It

is, however, strongly reduced for the strongly growing cases

with 0 < f/S < 1 where the spanwise component becomes

important. The center figure shows the gradients of the ver-

tical velocity component ε2,β . Again the spanwise gradient

is strongly increased for the cases with strongly growing tur-

bulent kinetic energy. The right figure shows the gradients

of the spanwise velocity component ε3,β . For most cases

the vertical gradient shows the largest contribution, but it

is reduced for the cases with strongly growing turbulent ki-

netic energy. In general, by magnitude large rotation ratios

lead to large spanwise gradients of the velocity components.

The cases with growing turbulent kinetic energy, however,

are characterized by strong vertical gradients of the velocity

components.

Wavelet-based Anisotropy Measures

Space–scale decomposition of the flow is obtained by ap-

plying the orthogonal wavelet transform to the velocity field.

Therefore, the velocity field u = (u1, u2, u3) at a given time

instant is developed onto an orthogonal wavelet basis us-

ing Coiflet 12 wavelets (Farge, 1992). The projection of one

component uα(x) can be represented by

uα(x) =
∑

λ

ũα
λ ψλ(x) (5)

with the subscript λ = (j, i, d) , where j represents the scale,

i the position and d the direction. Due to orthogonality the

wavelet coefficients are given by ũα
λ = 〈uα, ψλ〉, where 〈, 〉

denotes the L2-inner product. The wavelet coefficients mea-

sure the fluctuations of uα at scale 2−j and around position

i/2j for each of the seven possible directions d. The con-

tribution of uα at scale 2−j and direction d is obtained by

fixing j and d and summing only over i in equation 5 and is

denoted by uj,d
α .

Parseval’s identity allows to obtain directional energy

contributions (Bos et al., 2007), which also depend on scale.

For the directional scale dependent energy distribution of a

velocity component uα we thus obtain:

Ej,d
α =

1

2
〈uα, uα〉 (6)

Summing over all scales we get the directional energy of the

velocity component uα in the direction d:

Ed
α =
∑

j

Ej,d
α (7)

By construction we obtain the total kinetic energy as follows:

E =
∑

j,d

Ej,d
α =

∑

d

Ed
α (8)

To study higher order scale dependent statistics we de-

fine the p-th order centered moments of each component uα

of the vector field u at scale j by its wavelet coefficients

(Schneider et al. 2004):

Mα
p,j =

1

7 × 23j

2j−1
∑

i=0

7
∑

d=1

[

ũα
λ − M̄α

j

]p
(9)

Here

M̄α
j =

2j−1
∑

i=0

7
∑

d=1

ũα
λ/(7 × 23j) (10)

denotes the mean value at scale j. The scale dependent

flatness of a velocity component uα is defined as follows:

F α
j = Mα

4,j/
(

Mα
2,j

)2
(11)

It is closely related to the standard deviation of the spec-

tral distribution of energy, which illustrates that F �
j yields a

measure for the relative spatial fluctuations of the spectral

energy density (Bos et al., 2007).

Relating the scale index j with a wavenumber kj by kj =

k02j where k0 is the centroid wavenumber, being constant

for each type of wavelet (k0 ≈ 0.77 for the Coiflet 12 used

here), the scale dependent distributions (energy, skewness

or flatness) can be related to wavenumber distributions, e.g.

energy spectra (Bos et al., 2007).

The bottom row in figure 8 shows directional energy com-

ponents Ed
α/E for the x, y and z components. These wavelet

based measures exhibit a striking similarity with the direc-

tional dissipation rate components ei,j/e. This is due to the

fact that wavelet coefficients measure fluctuations of velocity

components in one of the seven possible directions and they

thus can be related to velocity gradients.

The directional scale-dependent flatness of the three ve-

locity components is plotted in figure 9. Here we focus only

on two cases, one for f/S = +0.5 (top) which is represen-

tative for a flow with strongly growing energy, and one for

f/S = +5 which represents the energy decaying flows. A

general feature of all curves is a strong increase of the flatness

with wavenumber, which reflects the flow intermittency. It

can also be observed that the growth of flatness of all veloc-

ity components is the strongest in the streamwise direction,

except for the case f/S = +0.5 where the flatness of the u1

velocity component behaves similarly in all directions due to

the strong shear production.

CONCLUSIONS

The results of nine direct numerical simulations of homo-

geneous turbulence with shear and rotation are evaluated

for anisotropy properties of this flow. The turbulent ki-

netic energy was found to grow strongly in the anti-parallel

configuration with 0 < f/S < 1 and to decay otherwise.

The growth is due to an increased normalized turbulence

production P/SK = −2b12 that is directly related to the

only non-zero off-diagonal component of the Reynolds stress

anisotropy tensor. It was also observed that the growth rate

of the turbulence is related to the inclination angle of vorti-

cal structures to the downstream direction (Jacobitz et al.,

2008).

The directional energy of the flow, based on orthogo-

nal wavelets, allows to give an alternative description of

the anisotropy of the flow. Wavelets, like structure func-

tions, are sensitive to velocity differences in the different

directions. This allows to characterize longitudinal and

transversal anisotropy. Furthermore, orthogonal wavelets
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Figure 8: Dependence of the dissipation rate component εα,β for β = 1, 2 and 3 (top) and directional energy component Ed
α/E

for d = 1, 2 and 3 (bottom) on the rotation ratio f/S at non-dimensional time St = 5. The x1 component (left), x2 component

(center), and x3 component (right) are shown.
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Figure 9: Directional scale-dependent flatness for f/S = +0.5 (upper row) and f/S = +5 (lower row). The u1 component

(left), u2 component (center), and u3 component (right) are shown.
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have the advantage that, by construction, the energy con-

tained in the different direction sums up to the total energy,

unlike structure functions or one-dimensional spectra. For

the strongly growing case with f/S = +0.5 the spanwise

differences of vertical velocity contain most of the energy,

followed by the spanwise differences of downstream velocity.

For the strongly decaying case with f/S = +5, however, the

vertical differences of spanwise and downstream velocities

contain most of the energy, while vertical velocity is strongly

reduced. Wavelet based directional energy measures agree

with conventional measures and allow furthermore to quan-

tify the flow intermittency in different directions.
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