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ABSTRACT

A numerical investigation of active wave cancellation

using a pulsed plasma actuator was carried out for a flat-

plate boundary layer with an adverse pressure gradient at

low Reynolds number. Pulsing was achieved by sinusoidal

modulation of the high-frequency plasma excitation voltage.

The closed-loop control was implemented in a CFD code

(FASTEST). Using a feed-back control algorithm it was

found to be sufficient to control only two of the three o-

peration parameters in order to reduce Tollmien-Schlichting

waves significantly. A Nelder-Mead-type method for fin-

ding a local minimum of a function of several variables and

the trust region method NEWUOA (Powell, 2008) based on

quadratic models using minimization without derivatives of

functions are used in this work. These two unconstrained

optimization algorithms have been used to compare the op-

timum parameters found by each control algorithm.

INTRODUCTION

In recent years, much attention has been directed to-

wards actively controlling the laminar-turbulent transition

process of a boundary layer. The studies on boundary-

layer transition to turbulence remain an important subject

because the transition causes a substantial rise in friction

drag. Generally, transition in a two-dimensional boundary-

layer over a flat-plate is dominated by Tollmien-Schlichting

(TS) instabilities. This natural process, which occurs un-

der conditions of very low free-stream turbulence, can be

classified into either steady or unsteady disturbances in the

free-stream flow, such as noise or vortices (Saric, 2007). The

perturbations in the boundary-layer are selectively ampli-

fied frequencies while propagating downstream along the

flat plate. In the first stage of development, the harmonic

instabilities are mainly two-dimensional. In a later stage,

the development becomes more and more nonlinear and

secondary instabilities lead to an increase in the growth

of three-dimensional disturbances. These three-dimensional

distortions are followed by the turbulent breakdown.

Due to the high level of disturbances and the extreme

difficulty to evaluate the derivatives of objective functions

in the simulations, the use of methods for unconstrained

optimization becomes indispensable in the optimizations of

the involved parameters for the cancellation of TS-waves

using plasma actuators. Algorithms for unconstrained op-

timization have been used extensively to solve parameter

estimation problems for almost 40 years. Despite their age

they are still the method of choice for many practitioners in

the fields of statistics, engineering and the physical and med-

ical sciences because they are easy to code and very easy to

use. The crucial issue is finding a better answer quickly. The

asymptotic convergence property is in some cases irrelevant.

In fact, a frequent aim in the applications is improvement

rather than directly optimization.

Furthermore, the authors present results using optimiza-

tion tools, where variations of only two parameters are

necessary to obtain the cancellation of TS-waves over a

flat plate. In this paper, the authors focus on the linear

stage of the growth of disturbances, where delaying the

laminar-turbulent transition by an active control is more

easily achievable. The influence of materials, electrical pa-

rameters and geometry of the actuator such as electrode size,

thickness, electrode gap and others will not be considered in

the present paper.

In this work we consider also the algorithm of Nelder

and Mead (1965) because it has become the most popular

simplex method in practice for unconstrained optimization.

The other optimization method investigated in this paper

was developed by Powell (2008).

THE COMPUTATIONAL DOMAIN

The computational domain and the plasma actuator con-

figuration is corresponding to the original experiments as

described in (Grundmann, 2006a). Fig. 1 depicts the test

section of 0.45m by 0.45m cross section and a length of 2m.

The insert on the ceiling of the test section is designed to

create a constant, positive pressure gradient, promoting the

transition process. A plasma actuator 400mm downstream

of the flat plate’s leading edge is operated in pulsed mode

to artificially induce TS-waves into the boundary layer at a

frequency of 110Hz. The second plasma actuator, denoted

as control actuator, is positioned 100mm downstream of the

excitor. In this work, the body forces created by the excitor

and the control actuator are modulated with a sinusoidal

function. Two velocity sensors are positioned at x=450mm
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Figure 1: Overview of flow domain, sensor and actuator po-

sition

and x=550mm.

PLASMA ACTUATOR MODEL

To reduce the computational cost and also to simplify the

equations involved in the simulations, this model develop by

Jayaraman et al. (2003) and improved and calibrated by

Grundmann (2008) assumes that the plasma is present only

within a triangular range above the lower electrode and only

inside this region can a body force be produced. Assume

that no interaction exists between the charge density and

the electrical field and that ions which are accelerated by the

electrical field pass their entire impulse on to the neutral gas

of molecules. Thus, the following expression has been used

Figure 2: Calibration-based model scheme.

to describe the body force:

�f =
ρc0V 2

dV0
e−2(m1x+m2y)�nec, (1)

where m1 and m2 are the gradients of the electric field. The

normal vector of the volume strength �n depends on the ar-

rangement of the triangular area and it acts constantly over

the entire field (see the Fig. (2)). That means that all forces

act in the same direction. To model the plasma actuator it

is necessary to know the operating voltage V and the elec-

trode gap d. The dimensions of the triangular area depends

only on the voltage V . The force is implemented directly in

the momentum equations (Navier-Stokes equations) of the

solver. The model and also its calibration was presented in

(Grundmann, 2006b) and (Quadros et al., 2009).

The sinusoidal modulation used to describe the body-

force presented in (1) is given by

F ∗ = bf + sin[2π
υ

λ
(t + φ)] (2)

where bf is the voltage, λ is the wavelength, υ the phase-

speed and φ the phase-shift. In this work, the frequency

and wavelength are constant in the simulations. The body-

force and phase-shift are the parameters which need to be

optimized. The optimization models used in the current

paper are described in the next section.

OPTIMIZATION MODELS

Two optimization methods will be described and com-

pared to validate the closed-loop control developed in this

work. The Nelder-Mead method is a pattern search algo-

rithm that compares in each iteration the functional values

at the vertices and generates a new simplex by replacing the

worst vertex by a new one (Nelder, 1965). NEWUOA is a

method for unconstrained optimization without derivatives.

A local minimum of an objective function F (x) is calculated

by building a quadratic model.

Closed-loop control

Fig. 3 shows the closed-loop control (CLC) circuit used in

the present investigation to attenuate TS-waves. The excitor

on the left side excites oscillations in the boundary layer

that grow as they travel downstream. 50mm downstream of

the excitor a sensor (S1) is positioned. The sensor signal is

used to determine the wavelength and amplitude of the TS-

waves. If a certain amplitude is exceeded the closed-loop

circuit starts to operate. The algorithm follows the steps

outline below:

Figure 3: Closed-loop control scheme

1. The signal of the first velocity sensor (S1) indicates when

the amplitude of TS-wave (Ỹi, i = λ) is larger than the

prescribed amplitude (Ỹ0). Then the initial conditions

(Φ0, bf0, Δ0) are read and the closed-loop circuit starts

to operate.

2. These conditions are used in a sinusoidal function F ∗ =

f(Φ, bf, Δt), that is coupled to the plasma actuator

model, implemented in the Navier-Stokes momentum

equation, beginning the process of active wave cancel-

lation.

3. After a period that corresponds to two wavelengths

(λ = ν
f
), the signal of the second velocity sensor (S2) is

used to analyze the amplitude of the attenuated wave.

If the amplitude of the controlled TS-wave (Ỹi+1) is

smaller than a (Ỹi), a controller parameter signal takes

a positive value and the operating parameter changes

adding a step size. Otherwise, if the amplitude (Ỹi+1)

increases with time, the step size of the operating pa-

rameter will be reduced (ΔΨi = 0.2ΔΨi−1) and the

controller parameter takes a negative value.

4. Return to step 2 again until the controlled parameter

remains unchanged in time, i.e. the convergence error

ε ≈ 0.

The procedure is similarly applied to all operating pa-

rameters. Convergence is obtained within only a few itera-

tions.

The amplitude of the waves downstream of the control

actuator is analyzed using the signal of the second sensor

(S2), positioned at x = 550mm. At the beginning of each

cycle, an algorithm alters the controlled parameter in an

iterative process based on the comparison of the amplitude

of the previous cycle and the actual amplitude to determine
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Table 1: Optimization parameters using CLC.
Voltage Δ bf signal Phase shift Δ Φ signal
5000.00 500.00 + 180.00 20.00 +
5500.00 500.00 + 200.00 20.00 +
6000.00 500.00 + 220.00 20.00 +
5600.00 100.00 - 204.00 04.00 -
5520.00 020.00 + 208.00 04.00 +
5540.00 020.00 + 212.00 04.00 +
5560.00 020.00 + 216.00 04.00 -
5580.00 020.00 + 220.00 04.00 -
5564.00 004.00 - 216.80 00.80 +
5568.00 004.00 - 217.60 00.80 +
5564.80 000.80 + 218.40 00.80 +
5565.60 000.80 - 219.20 00.80 +
5564.90 000.16 - 218.56 00.16 -

whether the last step improved the cancellation result. If the

last step resulted in an improvement the controlled variable

is altered again in the same direction. Only one parameter

can be controlled at a time. The alteration of the phase shift

φ = 180o − 340o produces different cancellation results, as

illustrated in Fig. 4. At about φ = 210o the best attenuation

of TS-waves can be observed. In this diagram, the phase

shift has been continuously changed in order to demonstrate

the influence of this parameter.

Figure 4: Phase-shift Φ = 180 − 340 variation.

Table 1 shows the data evaluated during the optimiza-

tion of voltage and phase-shift processes using the algorithm

developed in the current paper. In this case Δbf0 = 500V ,

bf0 = 5000V , ΔΦ0 = 180o and Φ0 = 20o. The convergency

criterion is given by

fopt = f(Φmax, bfmax) − f(Φmin, bfmin) ≤ 2 × 10−1, (3)

because it is not computationally expensive and yields sat-

isfactory results.
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Figure 5: Comparison of amplitude, phase shift and voltage

using CLC method.

Nelmead method

Table 2: Optimization parameters using Nelmead method.
k Best point Good point Worst point
1 f(6050.00,210.00) f(6350.00,220.00) f(5850.00,230.00)
2 f(5550.00,220.00) f(5850.00,230.00) f(6050.00,210.00)
3 f(5550.00,220.00) f(5850.00,230.00) f(5350.00,240.00)
4 f(5550.00,220.00) f(5875.00,217.50) f(5850.00,230.00)
5 f(5550.00,220.00) f(5575.00,207.50) f(5875.00,217.50)
6 f(5550.00,220.00) f(5575.00,207.50) f(5250.00,210.00)
7 f(5550.00,220.00) f(5575.00,207.50) f(5408.00,211.80)
8 f(5562.50,213.80) f(5479.00,215.90) f(5550.00,220.00)
9 f(5562.50,213.80) f(5479.00,215.90) f(5491.50,209.60)
10 f(5562.50,213.80) f(5506.10,212.20) f(5479.00,215.90)
11 f(5562.50,213.80) f(5506.10,212.20) f(5589.60,210.10)
12 f(5562.50,213.80) f(5506.10,212.20) f(5506.65,214.45)

The Nelder-Mead (Nelmead) method is a simplex

method for finding a local minimum of a function of several

variables. It’s discovery is attributed to J. A. Nelder and

R. Mead (1965). For two variables, a simplex is a triangle,

and the method is a pattern search that compares function

values at the three vertices of a triangle. The worst vertex,

where f(x, y) is largest, is rejected and replaced with a new

vertex. A new triangle is formed and the search is continued.

The process generates a sequence of triangles (which might

have different shapes), for which the function values at the

vertices get smaller and smaller. The size of the triangles

is reduced and the coordinates of the minimum point are

found.

Figure 6: The sequence of triangle converging to the opti-

mum point for the Nelder-Mead method.

Applying the Nelder-Mead method to optimize the op-

erating parameters of the plasma actuator using sinusoidal

modulation, three vertexes are first simulated using the

FASTEST-3D code. The amplitude of the TS-waves (func-

tion) are then evaluated at these verticies. The data are

presented in table 2. The initial vertex B̃= (6050V, 210o)

corresponds to the parameters where the amplitude of the

TS-waves are more efficiently reduced in the first iterations.

The worst vertex W̃= (5850V, 230o) attenuates the func-

tion badly compared with another two vertices and so will

be rejected and replaced with a new vertex. The process

generates a sequence of triangles, for which the function

correspondent of the parameters at the vertices get smaller

and smaller. The process stops when the objective function

is reached, in other words, the amplitude of TS-waves are

completely reduced. The diagram of the Fig. 6 gives more

details about the steps of the triangle process generated in

the algorithm during the optimization process.

The influence of the initial points affects the temporal

evaluation, but the optimum points do not change with

them. Fig. 7 shows two different initial points using Nelder-

Mead method. The evaluation points are chosen distinctly

apart and at the same time the convergency criterium was

satisfied for both cases. This shows that the optimum points

are found independently of the chosen initial point.

NEWUOA method
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Figure 7: Comparison of amplitude, phase shift and voltage

for two different initial points using Nelder-mead method.

NEWUOA seeks the minimal value of a function F (x),

x ∈ Rn, when F (x) can be calculated for any vector of

variables x. In each iteration a quadratic model Q is created

using m interpolation points of F .

As input NEWUOA expects an initial vector x0 ∈ Rn, in

our case it is n = 2 and x0 = (voltage, phaseshift). The num-

ber of interpolation conditions is selected as m = 2n+1 = 5,

because NEWUOA shows for this value a good optimiza-

tion behaviour. The interpolation points are chosen inside a

neighbourhood (trust-region) of x0 with range ρbeg.

With these points an initial quadratic model Q is cre-

ated to optimize F . Then the following iterations are made:

The minimum of Q is computed inside a trust-region. The

objective value of this new located point is calculated and

is used to update Q by replacing the actual worst point.

Because of this each iteration changes only one of the in-

terpolation points, keeping m fixed. The m chosen points

are the best vectors of variables at the beginning of the k-th

iteration, which means that their objective function values

are the minimal calculated values of F so far. If the values of

the objective function F stops decreasing, the trust-region

radius is reduced. NEWUOA stops if the radius is lower

than a given end value. The defined objective function is

given by
i+m−1
∑

j=i

(A(tj+1) − A(tj))
2

tj+1 − tj
, (4)

where A is the TS-wave amplitude and λ = |[ti, ti+m]| with

time ti. Details can be found in (Powell, 2008).

Figure 8: NEWUOA scheme.

Table 3 presents the data of the evaluation points of the

Table 3: Parameter optimizations using NEWUOA method.
k×103 point 1

f(bf, φ) amplitude Ftarget

2 f(6000.00,210.00) 0.428 089.776
4 f(6500.00,210.00) 0.551 251.304
6 f(6000.00,220.00) 0.444 105.150
8 f(5500.00,210.00) 0.256 041.368
10 f(6000.00,210.00) 0.328 092.146
12 f(5536.03,200.00) 0.219 040.132
14 f(5516.10,206.34) 0.172 036.464
16 f(5471.57,205.42) 0.167 034.091
18 f(5474.57,204.96) 0.177 033.349
20 f(5458.42,203.97) 0.160 032.866
22 f(5422.94,205.93) 0.163 030.829

NEWUOA method. The corresponding points of this table

are shown in Fig. 8.

Initially the five points are evaluated and the amplitude

and the objective function for all points are found. Using

these points the initial quadratic model Q is developed.

The next point is chosen in the trust-region of the opti-

mal point (5500, 210) and is found in (5536.03, 200.00). The

point, that has the maximum value of the objective function

is discarded, in this example it is (6500, 210), and replaced

by (5536.03, 200.00). This one is the new optimal point and

the next point is searched in its trust-region and so on.

Minimizing the objective function, the TS-waves are to-

tally attenuated. In this case the best body-force bfopt =

5422.94V and phase-shift Φopt = 205.93o was found, corre-

sponding to the minimal objective function value Ftarget =

30.829.
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Figure 9: Comparison of amplitude, phase shift and voltage

for two different initial points using NEWUOA method.

Fig. 9 shows two independent simulations using differ-

ent initial points to start the NEWUOA method. For

the first simulation: x1 = (5000, 210); x2 = (5500, 210);

x3 = (5000, 220); x4 = (4500, 210) and x5 = (5000, 200)

and for second simulation, the initial parameters are given

in table 3. Observe that in both cases the optimum param-

eters are found in approx. 20ms. The best parameter in the

second case is xopt = (5389.16, 212.26). The temporal evo-

lution of the velocity profile in the second sensor is described

in Fig. 10. In this case a reduction of 96% of the TS-wave-

amplitude is found, as confirmed in the upper diagram of

Fig. 9.

A comparison between all methods in the forward sec-

tions at 90mm downstream the control actuator points is

shown in Fig. 11. The optimization methods presents rea-

sonable velocity of convergency and the results show very
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Figure 10: Comparison with two initial points using

NEWUOA at x=590mm.

good agreement, reducing the TS-wave amplitude by 95%

in all three cases.
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Figure 11: Amplitude of TS-wave comparison for three op-

timization methods.

VELOCITY SPECTRA

The velocity spectra for the flow with the actuators on

are shown in Fig. 12. They reveal two important features.

The first is the large spectral peaks at the unsteady excita-

tion frequency of the TS-waves and higher harmonics. The

second important feature is the similarity in the magnitude

of background noise in both cases. The spectra give more

detailed information about the frequency content and the

shape of the fluctuations with and without control actua-

tor using the optimal parameters. At the first position at

x=450mm (upstream of the control actuator) the harmonics

have the same amplitude in both cases and the peaks show

the disturbances generated by the excitor. At x=590mm,

the harmonics have a high amplitude without control actu-

ator because the flow already is in a transitional process.

However, at the same stream-wise position, the harmonics

are reduced significantly and the fifth peak is not present

at all when the control actuator is turned on. If the ac-

tive wave cancellation is operating, the velocity-spectra of

the second sensor signal shows remarkably reduced ampli-

tudes compared to the case without active wave cancellation

(AWC). A mean cancellation of about 16dB can be observed

in the fundamental TS frequency range (110Hz), which cor-

responds to a reduction of the TS-amplitudes at least of

88%.

CONCLUSIONS

Plasma actuators reduce the amplitude of TS-waves sig-

nificantly in a flat-plate boundary layer using sinusoidal

modulation leading to a delayed transition. The AWC

closed-loop circuit is operated autonomously in the numeri-

cal simulations. It is found that only two operating param-

eters must be controlled in order to reduce the amplitude

Figure 12: Velocity spectra at two streamwise locations with

and without control actuator. The data was extracted from

y = 0.5 δ99.

of TS-waves. The best phase shift and body force found

for 8m/s velocity was around Φ = 210o and bf = 5.5kV ,

respectively.

Optimizing only two parameters of plasma actuator the

method developed in this work yielded better convergence

compared with NELMEAD and NEWUOA methods. How-

ever, increasing the number of parameters to be considered

in the optimization the CLC method becomes inviable com-

putationally and the other two algorithms maintain the same

velocity of convergence. The NEWUOA method is more

precise than the other two optimization methods since this

method has an approximation of second order.
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