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ABSTRACT

A new technique for extracting information about cyclic

and periodic features in turbulent-flow fields is proposed.

A phase-space decomposition of the flow field is first per-

formed, based on proper orthogonal decomposition (POD),

and then recurrence plots (RPs) are used to analyse the sys-

tem. The technique allows the temporal behaviour of the

flow viewed as a dynamic system to be identified. The

basic elements of the analysis are presented first, with the

Lorenz system used for illustration, and then two related

flows field are analysed with the new technique, with results

contrasted against the classical spectral analysis.

INTRODUCTION

There are several well-established approaches to scruti-

nizing structural features in full-field representations (PIV,

DNS, LES) of complex flows - e.g. via a visualisation of

the Q, λ2, pressure, enstrophy fields. However, there are

few tools available for analysing periodic, quasi-periodic and

cyclic events. Spectra derived from time-series form the

usual route to identifying (broadly) periodic events. How-

ever, when this periodicity is not well-defined (i.e. is mod-

ulated or varies in frequency within a limited range), and

when the frequency is low, so that the data available do not

span many cycles, spectra return very noisy data and broad-

band behaviour. POD is an alternative approach, in so far

as it yields the temporal coefficients of the eigenmodes of

any chosen flow variable, organised according to the energy

content of the flow. Here again, the scope for identifying

cyclicities is very limited, because this can only be done by

analysing the coefficients as separate time-series. This can

be misleading if, as is the case in complex turbulent flows,

the energy variation across many leading modes is fairly uni-

form.

Configurations in which quasi-periodic and cyclic events

are especially difficult to identify are relatively weakly sep-

arated flows, e.g. separation from humps, hills and gently

curving ramps of relatively low height-to-length ratios. Typ-

ically, the question arises whether there is any kind of regular

or quasi-regular “shedding-like” periodicity or flapping, or

whether there are cyclic events that occur regularly, but in-

frequently, and at irregular intervals. Such information is

not only fundamentally important, but can have real prac-

tical implications associated with characterising extreme

events and identifying excursions that can lead to instability

and vibrations.

In this paper we apply a recently developed approach

(Lardeau et al, 2008) that combines POD with “Recurrence

Plots” (RPs), a tool well-established in dynamical-systems

analysis outside Fluid Mechanics, to weakly-separated flows.

We demonstrate that this approach allows cyclicities to

be identified visually from particular patterns in the plots.

A supporting quantitative analysis rests on extracting the

probability of recurrence from the RP. In dynamical-systems

terminology, the distinct cyclicities thus identified represent

drastic changes of the dynamical system (i.e. global flow)

behaviour in phase-space.

PROPER ORTHOGONAL DECOMPOSITION

The starting point of the method is a selected subset (or

all) of the relevant “modes” for the flow in question. The

temporal coefficients of the modes are held to characterise

the evolution of the flow as a dynamical system in a multi-

dimensional phase-space. The trajectory in this subspace

may display quasi-periodic behaviour, presumed to corre-

spond to related quasi-periodic events in the flow as a whole.

Any flow field realisation can be decomposed as

ui(�x, t) =

N
∑

n=1

an(t)φn
i (�x) (1)

where N is the number of modes used for the representation,

an(t) are temporal modes and {φn
i } represent basis functions

that need to be selected to comply with a specific criterion

upon which the representation of the flow field is desired.

For POD, this basis is chosen so as to maximise the energy

content of lower-order modes (Holmes et al., 1996). If the

flow is unbounded (infinite, periodic) in one direction, here

represented by homogeneity in the z-direction, the empirical

eigenfunctions can be regarded as plane waves and take the

form:

φn
i (x, y, z) = ξq

i (x, y, k) exp(−ιkz) (2)

where q is the so-called quantum number. The behaviour

of the system emerges visually from a particular processing

of the temporal coefficients and a particular way of plotting

the processed results on a Recurrence Plot (RP).

RECURRENCE PLOTS

A RP is a two-dimensional map with both axes being

time (Marwan et al., 2007). If the state of the dynamical

system at time ti is characterised by the n-dimensional vec-

tor �xi (representing its “properties” in some specified sense)

and at time tj by �xj , a distance norm between the two states

at the two different times may be computed. This can be

done for any time value ti, associated with one axis of the

RP, and any other time value tj , associated with the other

axis. When this distance is below a given threshold ε, the
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Figure 1: Phase-space trajectory of the Lorenz system, Eq.

8, with σ = 10, β = 8/3 and ρ = 28.

system (the flow) may be said to be close to the state on a

previous time (which is regarded as a recurrence). Mathe-

matically, this can be expressed as:

Rij = θ(ε− ||�xi − �xj ||) (3)

where θ is the Heaviside function. i.e. a value of 1 is then

attributed to events at a distance less than ε, and a value 0

identifies events at a distance greater than ε. The value 1 is

then entered as a black mark into the RP, while locations cor-

responding to the value 0 remain white. For non-stochastic

processes, the RP features characteristic patterns to which

specific meanings can be attributed, as illustrated below.

Among many significant features, the most frequent pat-

terns observed are lines parallel to the “Line of Identity”

(LOI) - the diagonal of the time-time plot - and horizontal

and vertical strips. Continuous or discontinuous lines par-

allel to the LOI identify the fact that the trajectory visits

the same region of the phase-space at different times. The

length of any diagonal line is determined by the duration of

such a similar local evolution of the trajectory segments.

A more general approach to constructing RPs (refered

to as Global recurrence plots, GRP) is to use the distance

between two points in the phase-space

Dij = ||�xi − �xj || (4)

and sensitise this quantity continuously to gray shading on

the GRP. However, Eq. 4 is dimensional, i.e. the range of

values that Dij can take depends on the diameter (in the

phase-space) of system considered. On the other hand, Rij

(Eq. 3) requires a definition of a unique ε and this also

depends on the system.

A definition that avoids the two major drawbacks noted

above is:

Uij = C2(||�xi − �xj ||) (5)

where C2(.) is called the Grassberger-Proccacia correlation

and is defined by:

C2(ε) =
1

N2

N
∑

i,j=1 ; i�=j

θ(ε− ||�xi − �xj ||) (6)

which is a measure of the recurrence density, for a given

value of the threshold ε. An important advantage of this

definition is that the quantity is non-dimensional (i.e. using

diameter of the phase-space), thus ensuring that all values

fall between 0 and 1. Another feature of Eq. 5 is that C2 is

a quantitative measure of recurrence, in so far as it identi-

fies, in an average sense, the proportion of time over which

recurrence occurs (i.e. a density). Because no threshold is

(a)

(b)

(c)

Figure 2: Lorentz attractor: (a) RP with ε=10% of the

phase-space diameter, (b) GRP and (c) URP.

used explicitly in Eq. 5, this is referred to as unthreshold

RP (URP).

The three RP definitions provided above are illustrated

by reference to the famous Lorenz attractor (Lorenz, 1963):

ȧ1 = σ(a2 − a1)

ȧ2 = ρa1 − a2 + a1a3 (7)

ȧ3 = −βa3 + a1a3

where σ, ρ and β are constant. The phase-space trajectory

for this system is shown in Fig. 1. The trajectory is charac-

terised by two lobes, each formed by closely-bunched loops.

After a number of loops, the dynamical system experiences

a drastic change, with the trajectory forming the other lobe.

Both the loops and the drastic (cyclic) change of lobes are

clearly brought out in the three types of recurrence plots

defined earlier and shown in Fig. 2, with diagonal segments

identifying periodic looping and blocks of lines identifying

the lobes (see Lardeau et al., 2008, for more interpretations

on the different patterns observed on the RPs).

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

730

미정댁
메인/컨텐츠



A second quantitative measure is the probability of recur-

rence. Again, for a given threshold ε and for a time interval

τ , this is defined as:

p(ε, τ) =
1

N − τ

N−τ
∑

i=1

θ(ε− ||�xi − �xi+τ ||) (8)

A more general interpretation is one in which any of RP

definitions, Eqs. 3, 4 and 5, replaces the argument under

the sum in Eq. 8, thus giving:

p(τ) =
1

N − τ

N−τ
∑

i=1

Oi,i+τ (9)

with Oi,i+τ being either Ri,i+τ , Di,i+τ or Ui,i+τ .

For the Lorenz system, Eq. 5 and Fig. 2, Fig. 3 shows

the behaviour of the Probability of Recurrence obtained for

the three definitions of RP. The distinct peaks for RP and

UPR represent respective lobes in Fig. 2, and the cyclicity

(transition from one lobe to another) can be quantified in

temporal terms. For the GRP, the variation is less clear,

because the continuous gray shading goes hand-in-hand with

continuous and relatively weak variations in the probability

curve.
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Figure 3: Probability of recurrence, Eq. 9, for the Lorenz

attractor.

APPLICATION TO SEPARATED FLOW

This paper restricts itself to an examination of the char-

acteristics of two closely related flows computed with LES

by Avdis et al (2009); Fig. 4 shows related instantaneous

snapshots. Results for other flows investigated are reported

elsewhere. The emphasis is here not, principally, on the

physics of separation, but on the extraction of characteristic

unsteady features by means of the RP method, in contrast

to conventional time-series analysis. Both flows separate

from an identical, nominally two-dimensional, dune-shaped

hump in a tunnel. They differ by the presence or absence

of a thin synthetic (zero-mass) slot jet, extending across the

entire spanwise extent and located close to the position at

which the flow separates from the hump wall. The effects of

the injection are clearly visible in Fig. 4. Both cases corre-

spond to laboratory configurations examined experimentally

by NASA (Greenblatt et al., 2005) in the context of sep-

aration control (i.e. reduction) with synthetic jets. The

juxtaposition of the two flows allows interesting differences

(a)

(b)

Figure 4: Isosurfaces of vertical velocity for (a) the baseline

flow and (b) with zero-net mass injection.

n q m En/Etot n q m En/Etot

1 1 1 0.04757805 9 6 1 0.01063542

2 2 1 0.02617285 10 2 2 0.00860705

3 3 1 0.01888331 11 7 1 0.00776091

4 4 1 0.01688989 12 3 2 0.00713798

5 1 2 0.01234243 13 8 1 0.00672639

6 5 1 0.01211669 14 4 2 0.00644351

7 1 0 0.0114942 15 3 0 0.0064337

8 2 0 0.01097353 16 9 1 0.00622801

Table 1: Relative energy associated with the first 16

POD/Fourier modes - Baseline Case.

to be brought out, in respect of the temporal behaviour,

as a consequence of the presence or absence of the periodic

jet injection. The injection in the perturbed case is at a

hump-height-based Strouhal number, Sth = fh/Uref = 0.2

- equivalent to the chord-based Strouhal number, StC =

fC/Uref = 1.66 – and the Reynolds number, based on chord

length and free-stream velocity is close to 1 million. Simula-

tions were performed with a grid of (768 × 96 × 128) nodes.

The POD decomposition was performed on a 3D sub-domain

extending from the wall to y = 0.2L in the wall-normal direc-

tion, across the entire spanwise extent of the simulation, and

from x = 0.6L, just upstream of the mean separation line, to

x = 1.5L, well downstream of the mean reattachment, which

is located at x = 1.1L. The POD modes are computed using

2200 snapshots regularly sampled over 28 time units (based

on the free-stream velocity and hump length).

RESULTS

The main purpose of the paper is to demonstrate that the

RP method allows information to be obtained that cannot be

readily derived from conventional time-series analyses. This

is done below by contrasting RP results with the spectra
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n q m En/Etot n q m En/Etot

1 1 1 0.07488363 9 6 1 0.01176285

2 1 0 0.06935005 10 1 2 0.01005792

3 2 0 0.06876842 11 7 1 0.01003761

4 2 1 0.06102749 12 8 1 0.00804597

5 3 1 0.03447086 13 2 2 0.00645995

6 4 1 0.02939622 14 9 1 0.00643326

7 5 1 0.0146129 15 10 1 0.00588129

8 3 0 0.01260445 16 11 1 0.00467147

Table 2: Relative energy associated with the first 16

POD/Fourier modes - Zero-net mass injection.

(a)
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Figure 5: Energy spectra and localisation of the probes for

(a) baseline case and (b) zero-net mass injection.

shown in Fig. 5, the upper set being for the baseline flow

and the lower one for the jet-actuated flow. The former

reveal no distinct frequency peaks or ranges which might

indicate cyclicity. However, the latter contain peaks at the

injection frequency, StC = 1.66, and another at roughly

0.83. Attention is now turned to the POD and RP results.

Fig. 6 gives the time variation of the first 16 POD coef-

ficients, for both flows shown in Fig. 4. Two corresponding

sets of 8 selected POD mode shapes are shown in Figs. 7 and

8, respectively. URPs for the two cases are shown in Fig. 9,

the last constructed with the leading 16 modes, containing

20% and 43% of the fluctuating energy for the baseline and

jet-actuated cases, respectively. Tables 1 and 2 - relating

to the baseline and perturbed flows, respectively give the

mode-related distribution of energy as a fraction of the to-

tal value. In the tables, q is the quantum number (see Eq.

2) and m is the number of full waves in the homogeneous

direction, corresponding to the wave number k = 2πm/Lz

contained in Eq. 2. The relevance of m becomes obvious if

considered against the mode shape in Fig. 7 and 8. Thus,

for example, for mode n = 5 in Table 1, m = 2, and Fig. 7(c)

shows that this corresponds to two complete spanwise waves

in the mode shapes. A discussion of the physical implica-

(a)
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(9,10)

(7,8)
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(1,2)
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(b)

(1,4)

(2,3)

(5,6)
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(13,14)

(15,16)

 0  5  10  15  20  25  30

Time

Figure 6: Temporal evolution of the first 16 modes, paired by

level of energy for (a) the baseline flow and (b) with zero-net

mass injection.

tions of the mode shape is given in Avdis et al (2009). One

facet of this interpretation is that the structure of baseline

case is dominated by streamwise-elongated features, indica-

tive of streamwise-oriented vortices, relative to clumpy and

spanwise homogeneous features in the actuated case, asso-

ciated with the injection and its interaction with (break-up

of) the streamwise-oriented vortices. This discussion is not

pursued further herein. Rather, attention is turned to the

temporal behaviour.

For the baseline flow, the temporal evolution of the co-

efficients for modes n =1 and 2 (Fig. 6a) give no hint of a

periodic behaviour. At a lower energy level, modes n =7 and

8 appear to reflect a Kelvin-Helmholtz-type shedding, an in-

ference derived from the associated m = 0 mode shape, Fig.

7(e). The temporal coefficients of these latter modes feature

recurrent, nearly periodic intervals, of length of order 1.2

time units corresponding to a Strouhal number StC=0.83

(i.e. about 0.5 times the injection frequency. There is also

an indication of a much lower-frequency modulation in n =7

and 8, with a period of roughly 5 time units (i.e. StC = 0.2).

A similar modulation is also visible in modes n =2 and 3,

suggesting the possibility of cyclic behaviour.

In the perturbed case, the temporal coefficients of modes

n=2 and 3, these being associated with the injection-induced

flapping, show the expected strongly pronounced sinusoidal

behaviour, consistent with the periodic injection process.

Mode n=2 is shown in Fig. 8(b), and this is characterized

by spanwise homogeneous features (m = 0). Table 2 shows

this mode to be almost as energetic as mode n =1, suggest-

ing that the streamwise-oriented features in this mode of the

baseline case are still present, albeit distorted by the injec-

tion. Higher modes are associated with lumpy structures

that are convected, as in the unperturbed case, above and
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Isosurfaces of φn
2
(x, y, z) = ±0.2 for (a) n = 1, (b)

n = 3, (c) n = 5, (d) n = 6, (e) n = 7, (f) n = 11, (g) n = 12

and (h) n = 15.

within the separated region. Their temporal coefficients give

a hint of cyclicity in the system, but the evidence gleaned

purely from the modes is very indistinct.

The URP for the baseline case (Fig. 9a) shows little

evidence of periodicity - i.e. there are very few lines paral-

lel to the LOI that are distinguishable as such - but there

is clear evidence of cyclicity, wherein the system executes

short-periods recurrent events that are represented by dark

square patches, e.g. between T = 7 and 12. Thus, the pre-

dominant features in the URP are vertical and horizontal

stripes, with a period varying between 3 and 5 time units,

corresponding to StC = 0.25. The RP for the perturbed

case is much more structured. First, it provides clear evi-

dence of the periodic injection process by way of the streaks

parallel to the LOI, which are separated by about 0.5 time

units, corresponding to the Strouhal number of the injec-

tion, StC = 1.66, corresponding to modes n =2 and 3, Fig.

6(b). Second, the URP shows thick lines parallel to the LOI,

which are separated by about one time unit. Third, it fea-

tures a cyclic behaviour, similar to that in the baseline case,

but with a considerably longer time scale of around 10 time

units. In a sense, it may be said that one effect of the peri-

odic injection is to reduce the complexity of the dynamical

system, by reducing the number of significant modes. While

the injection destabilizes the first two modes of the unper-

turbed flow, the system continues to undergo major changes

in state at a time scale more than one order of magnitude

larger than that of the injection process. This cyclicity is vir-

tually impossible to derive from the POD information alone,

and hence this case illustrates well that RPs can provide

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Isosurfaces of φn
2
(x, y, z) = ±0.2 for (a) n = 1, (b)

n = 2, (c) n = 5, (d) n = 7, (e) n = 8, (f) n = 11, (g) n = 13

and (h) n = 15.

useful information which is, at best, very difficult to derived

from conventional analytical tools, as discussed by reference

to the spectra in Fig. 5.

Figure 10 shows distributions for the Probability of Re-

currence, both derived from the URPs applied to the base-

line and perturbed flows, respectively. Each plot contains

three curves: one is derived by using all modes in Tables 1

and 2, the second is derived by combining only modes hav-

ing m = 0, and the third by combining only modes having

m = 1. The purpose is to attempt to bring to the fore the

type of spanwise modes that are associated with the cyclic

behaviour observed in the URPs themselves. For the base-

line flow, the Probability plot strongly suggests a cyclicity of

duration of roughly 5 time units (about eight times the in-

jection period), associated with m = 1 modes. These modes

correspond to a spanwise pair of streamwise elongated mode

shapes, and the implication is that the cyclicity arises from

alternating faster/slower moving spanwise structures. In ac-

cord with the above, the comparison of the two plots in Fig.

10 shows that the “frequency” corresponding to 5 time units

is indeed roughly 0.12 times the jet-injection frequency. The

latter is brought out by the m = 0 modes that identify the

spanwise homogeneous jet injection. A further conclusion

derived from Fig. 10 is that the m = 1 cyclicity, observed

in the baseline flow, is barely noticeable when injection is

introduced. Instead, the m = 1 modes indicate the presence

of a near-periodic feature of duration roughly twice the in-

jection period (i.e StC = 0.83, cf. Fig. 5). This feature is

also recognised from the URP as being represented by the

thicker black lines aligned with the LOI. Thus, the injec-
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(a)

(b)

Figure 9: URP for (a) the baseline flow and (b) with zero-net

mass injection, for all cases using the first 16 most energetic

modes.

tion substantially weakens the cyclic slower/faster moving

spanwise structures as well as increasing their frequency.

CONCLUSIONS

Periodic and cyclic events in two related turbulent flows

separating from a nominally 2-d hump, one being a periodi-

cally perturbed version of the other, are investigated using a

combination of POD and Recurrence Plot (RP) analysis. To

the authors’ knowledge, this is the first time that this type of

analysis is performed on fully turbulent flow fields. For the

unperturbed baseline flow, the RP analysis reveals motions

with two preferential time-scales that cannot be detected in

spectra: a low-frequency motion (StC = 0.2) presumed to

be associated with cyclically-varying streamwise-elongated

structures, and a higher-frequency motion (StC = 0.83) pre-

sumed to identify KH instability in the separated shear layer.

For the case perturbed by the synthetic jet at StC = 1.66,

two dominant frequencies observed in the related spectra are

also brought out in the RPs and especially in the Probability

of Recurrence variations. However, only the RP analy-

sis allows the presence of spanwise-homogeneous structures,

associated with the injection frequency, to be separated

from the streamwise-elongated structures at the frequency

StC = 0.83. Moreover, only the RP reveals the long-time-

scale cyclicity also observed in the baseline case, although it

is much weaker in the perturbed flow. This type of analysis
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Figure 10: Probability of recurrence p(τ), using unthresh-

olded recurrence plots for (a) baseline case and (b) zero-net

mass injection.

is currently being applied to other flows, among them sepa-

ration from a 3-d hill and free shear flows. The analysis can

also be used to identify spurious long-time-scale periodicity

rooted in numerical artefacts and looped precursor data for

shear flow fed into the flow-inlet planes of LES domains.
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