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ABSTRACT

Two turbulent flows, one generated by a regular grid

and the other by a fractal square grid are studied by means

of Direct Numerical Simulations (DNS). An innovative ap-

proach which combines high order compact schemes, Im-

mersed Boundary Method and an efficient domain decom-

position method is used in this study. Turbulent statistics

such as Reynolds stresses are investigated with the objective

to analyse the two different regions (production and decay

regions) downstream from the grid, as already observed in

the experimental results of Hurst & Vassilicos (2007). The

main goal of this numerical study is to identify the phys-

ical mechanisms implicated in the generation of turbulent

flows, especially when generated at different scales, but also

to compare the different levels of turbulence intensity gen-

erated by each grid.

INTRODUCTION

Homogeneous isotropic turbulence has been widely stud-

ied experimentally in wind or water tunnels and numerically

using tri-periodic boxes with spectral methods. Recently,

Hurst & Vassilicos (2007) and Seoud & Vassilicos (2007)

used different multiscale grids to generate turbulence in a

wind tunnel and have shown that complex multiscale bound-

ary/initial conditions can drastically influence the behaviour

of a turbulent flow, especially when a fractal square grid (see

figure 1, right) is placed at the entry of a wind tunnel test

section. Theses experiments have shown that fractal grids

can generate unusually high turbulent intensities compared

with regular grids. Moreover, they have also shown that the

multiscale nature of a fractal grid can deeply modify the tur-

bulent characteristics of the flow. For example, by playing

with the shape and the aspect of a fractal grid, it is possi-

ble to tune it as a very efficient inline mixer (high turbulent

intensities with small pressure drop, see Coffey et al., 2007).

Although the wind tunnel measurements have provided

invaluable time-resolved information on the unique proper-

ties of multiscale-generated turbulent flows, to better un-

derstand the underlying physics of this new kind of tur-

bulent flows, it is necessary to investigate their full spatial

structure. Chester et al. (2007) performed renormalized nu-

merical simulation (RNS) on a high-Reynolds number flow

over a tree-like fractal to model the drag of the unresolved

branches of the fractal tree. However, they did not inves-

Figure 1: Scaled diagrams of the fractal square grid (left)

and the regular grid (right) used in this numerical study.

Note that they have the same blockage ratio.

tigate any turbulent intensities in their simulations. Very

recently, Nagata et al. (2009) performed DNS of turbulent

flows generated by three different fractal grids but with a

relatively small Reynolds number. They have been able to

recover some of the experimental results of Hurst & Vas-

silicos (2007), such as the higher turbulent intensities that

fractal square grids generate by comparison to regular grids.

Impressive advances in parallel platform architectures have

allowed Laizet et al. (2008) to successfully develop an inno-

vative numerical approach for DNS of multiscale-generated

turbulent flows which combines the IBM for the modelling

of the grids with high order schemes and a 1-D domain de-

composition method. They have also successfully performed

DNS of turbulence generated by a fractal cross grid at dif-

ferent spatial resolutions in order to validate their numerical

strategy (see Laizet & Vassilicos, 2009).

In this study, we use DNS to compare turbulent flows

generated by regular and fractal square grids in order to

investigate the turbulent characteristics of each flow and dis-

cover the origins of the non-usual properties of a turbulent

flow generated by a fractal square grid previously observed

in the experimental data of Hurst & Vassilicos (2007).

The organisation of this paper is as follows. In the fol-

lowing section, we presents the DNS methodology, a brief

description of the grids and the numerical parameters of

each simulation. Some suggestive flow visualisations are

presented and discussed in section after. Then, in order

to better understand the underlying properties of each flow,

some statistical results are presented in the penultimate sec-

tion, following by a conclusion in the last section.
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FLOW PARAMETERS AND NUMERICAL MODELLING

Numerical methods

To solve the incompressible Navier-Stokes equations, we

use a numerical code (called Incompact3d) based on sixth-

order compact schemes for spatial discretization and sec-

ond order Adams-Bashforth scheme for time advancement.

To treat the incompressibility condition, a fractional step

method requires to solve a Poisson equation. The main orig-

inality of Incompact3d is that this equation is fully solved

in spectral space via the use of relevant 3D Fast Fourier

Transforms which allow different sets of boundary conditions

in each spatial direction: free-slip, periodic, inflow/outflow

or Dirichlet boundary conditions on the velocity field. With

the help of the concept of modified wave number (Lele,

1992), the divergence free condition is ensured up to ma-

chine accuracy.

The modelling of the grids is performed by an Immersed

Boundary Method (IBM). Following the procedure proposed

by Parnaudeau et al. (2003), the present IBM is a direct forc-

ing approach that ensures the no-slip boundary condition at

the wall of the grid. Combined with a sixth-order compact

filtering of the convective terms, this specific IBM leads to a

reduction of wiggles in the neighbourhood of the grid while

allowing better quantitative predictions at marginal resolu-

tion. A priori, the combination of a high order scheme with

the IBM can be problematic because of the discontinuity in

velocity derivatives locally imposed by the artificial forcing

term. However, even though the formal order of the solution

is reduced as a result, the code has been demonstrated to

be far more accurate with a 6th order scheme than with a

2nd order scheme both in statistics and instantaneous field

realisations (see Parnaudeau et al. (2003, 2008) for more de-

tails). Furthermore, the Cartesian grid does conform with

the geometries of the fractal and regular grids of figure 1

because they consist of right angles and they are placed nor-

mal to the mean flow. Note finally that the pressure mesh

is staggered from the velocity one to avoid spurious pressure

oscillations introduced by the IBM.

More details about the present code and its validation,

especially the original treatment of the pressure in spectral

space, can be found in Laizet & Lamballais (2008) and Laizet

et al. (2008).

The highly vectorised version of the code (parallelised

with MPI implementation) is used mainly because of the

multiscale nature of the fractal square grid. The code’s 1D

domain decomposition strategy offers two major advantages:

the accuracy of the order of our sixth-order schemes has been

maintained, and scalability is excellent because, even though

our compact schemes are implicit in space, there is no data

communication (overlapping) at the boundaries of each sub-

domain. Furthermore, this domain decomposition is fully

compatible with the parallel FFT library named “FFTW”

(http://fftw.org). More details about the present parallel

method can be found in Sandham & Howard (2004) and in

Laizet et al. (2008).

Description of the grids

For this numerical study, two different grids are consid-

ered: a regular grid which consists of equally distributed

equal size bars (see figure 1, left) and a fractal square grid

which consists of different sized squares placed in a fractal-

like pattern (see figure 1, right). This fractal grid is com-

pletely characterised by

• its number of fractal iterations, here N = 3

• its bar lengths Lj = Rj
LL0 and thicknesses tj = Rj

t t0
(in the plane of the grid, normal to the mean flow) at

iteration j, j = 0, ...,N − 1. Here, RL = 1/2, Rt =

0.584, L0 = 0.5Ly , where Ly and Lz (with Ly = Lz)

are the numerical domain’s lateral sections of the com-

putational domain (see figure 2).

• its number Bj of patterns at iteration j, here B = 4.

By definition, L0 = Lmax, LN−1 = Lmin, t0 = tmax and

tN−1 = tmin.

The blockage ratio σ is the same for both grids, σ ≈ 32%.

It is also of interest to define the thickness ratio of each

grid: tr = tmax/tmin = 8.5 for the fractal square grid and

tr = 1 for the regular one. Numerically, we set tmin = 1

in both grids. Unlike the regular grid, the fractal square

grid considered here does not have a well-defined mesh size.

Hurst & Vassilicos (2007) introduced an effective mesh size

for multiscale grids, Meff = 4T2

P

√
1 − σ where P is the

grid’s perimeter length in the (y − z) plane. Note that the

fractality of the grid influences Meff via the perimeter P

which can be extremely long in spite of being constrained to

fit within the area T 2. For the two grids considered here,

Meff = (40/3)tmin . For the fractal square grid, tmax =

0.96Meff . Note finally that the thickness of the bars in the

streamwise direction is 0.19Meff for both grids.

The simulations are be performed with the same

Reynolds number ReMeff
= 4000 (based on the effective

mesh size Meff of the grids and the streamwise upstream

velocity U∞), blockage ratio and effective mesh size. For the

Reynolds number considered here (ReMeff
= 4000) about

765 million mesh nodes are needed.

Numerical parameters

The numerical parameters of each simulation can be

found in Table 1. It is important to notice that the param-

eters for both simulations are the same the only difference

being the shape of the grid. Based on a preliminary study

by Laizet & Vassilicos (2009), the streamwise position of the

grid (5tmin from the inflow boundary of the computational

domain) has been carefully chosen to avoid any spurious in-

teractions between the modelling of the grid and the inflow

boundary condition (see figure 2 for a schematic view of the

flow configuration for the fractal square grid).

Domain (×Meff ) Mesh nodes

34.56 × 8.64 × 8.64 2305 × 576 × 576

ReMeff
Δt

4000 5.625 10−4Meff/U∞

Table 1: Numerical parameters of both simulations. Note

that Ly = Lz = 8.64Meff and Lx = 4Ly = 34.64Meff .

Due to the multiscale nature of the fractal square grid,

the number of mesh nodes is of crucial importance because

all the scales need to be accurately represented. A prelim-

inary study (Laizet & Vassilicos, 2009) has shown that five

mesh nodes is enough to discretize the smallest thickness of

the fractal square grid for the Reynolds number considered

here. This study has also established that the collection

time needed in the simulations for good low order statis-

tics is 15 Meff/U∞. Statistics are obtained by using the
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Figure 2: Schematic view of the flow configuration for the

fractal square grid.

symmetries of the flow and by averaging over time at given

spatial locations. This way, we obtain mean flow and tur-

bulence profiles as functions of streamwise distance x/Meff

or lateral coordinate y/Meff .

INSTANTANEOUS FLOW VISUALISATIONS

Instantaneous streamwise velocity visualisations of a tur-

bulent flow generated by the regular grid are given in figures

3 and 4. All the same-size wakes generated by the regular

grid interact and mix together very close to the grid, giv-

ing rise to a low intensity homogeneous isotropic turbulence

within about 20Meff from the grid. The fractal square grid

generates a more complex turbulent flow due to the mul-

tiscale nature of the grid. An illustration of this flow is

presented in figures 5 and 6 again in terms of instantaneous

streamwise velocity visualisations. A non-homogeneous tur-

bulent field is obtained close to the grid with clear presence

of wakes of three different sizes, corresponding to the three

fractal iterations of the grid. As already mentioned by Laizet

& Vassilicos (2008), these visualisations suggest sequential

interactions between wakes from small-scale ones all the way

up to larger scale ones. These interactions could be respon-

sible for the prolonged production region observed in the

experimental results of Hurst & Vassilicos (2007).

Although the flow generated by the regular grid becomes

homogeneous very close to the grid, it is important to note

that the fractal square grid can generate much higher tur-

bulence intensities compared with the regular grid even far

downstream where the turbulence becomes homogeneous.

This is clearly related to the imprint of the fractal grid which

remains important far from the grid and strongly influences

the turbulent flow. For the regular grid, the imprint disap-

pears relatively quickly whereas the square pattern of the

fractal square grid can still be observed at x = 30Meff .

Note finally that the experimental results of Hurst & Vas-

silicos (2007) and Seoud & Vassilicos (2007) indicate that

homogeneity is reached beyond x = 60Meff with fractal

square grids.

STATISTICAL RESULTS

Figure 7 shows the streamwise profiles along the centre-

line of turbulent Reynolds number Reλx
= u′λx/ν based

on the Taylor microscale λx = u′2/ < (∂u/∂x)2 > and the

Figure 3: Instantaneous streamwise velocity of the flow

behind the regular grid in the (x − z) plane, for y =

0, 2.16, 1.08 and 0.54Meff (Top to bottom). The black

color corresponds to 1.5 and the white one to −1.5.

Figure 4: Instantaneous streamwise velocity of the flow

behind the regular grid in the (y − z) plane, for x =

0, 1.2, 3, 4.5, 15 and 27Meff . The black color corresponds

to 1.5 and the white one to −1.5.

r.m.s. u
′

of the streamwise fluctuating velocity. The fractal

square grid generates a Reynolds number Reλx
more than

three times bigger than the classical grid despite the same

ReMeff
, in good agreement with the experimental results of

Hurst & Vassilicos (2007). Also, Reλx
is roughly constant

for the classical grid whereas it is decreasing slowly for the

fractal square grid, in qualitative agreement with the exper-

imental results of Hurst & Vassilicos (2007) and Seoud &

Vassilicos (2007)

In figure 8, we observe two different behaviours for the

streamwise evolution of the mean velocity. As expected with

the regular grid, U/U∞ is found to have a wake-like be-

haviour close to the grid with a small recirculation bubble

due to the two crossed bars on the centreline of the grid. Af-

ter x ≈ 8Meff , U/U∞ remains constant with a value very

close to 1. For the fractal square grid however, we observe

a different streamwise evolution of the mean velocity on the

centreline. U/U∞ is found to peak close to the grid at a
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Figure 5: Instantaneous streamwise velocity of the flow

behind the fractal square grid in the (x − z) plane, for

y = 0, 2.16, 1.08 and 0.54Meff (Top to bottom). The black

color corresponds to 1.5 and the white one to −1.5.

Figure 6: Instantaneous streamwise velocity of the flow

behind the fractal square grid in the (y − z) plane, for

x = 0, 1.2, 3, 4.5, 15 and 27Meff . The black color corre-

sponds to 1.5 and the white one to −1.5.

value of 1.48, then decays to 1 and remains constant after

x ≈ 16Meff with a value close to 1.27.

In figure 9 we plot for both grids the development of

the turbulent intensities u′/U∞, v′/U∞ and w′/U∞ on the

centreline as the turbulence is convected downstream. For

the regular grid, the three turbulent intensities have the

same behaviour with a strong gradual decrease starting from

x ≈ 1Meff . For the fractal square grid, these turbulent in-

tensities build up until they reach a point xpeak ≈ 9.4Meff ,

where they peak and then decay beyond that point. Even if

the number of fractal iterations is smaller than the experi-

ments, this fundamental result is in good agreement with the

experiment of Hurst & Vassilicos (2007) and Seoud & Vassil-

icos (2007) who also had two regions downstream the grids

(production and decay regions) and found that these regions

are dependent on the set of parameters defining the fractal

square grid. Furthermore, we have performed animations of

the streamwise velocity visualizations using more than 500
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Figure 7: Streamwise profiles of turbulent Reynolds number

based on the Taylor microscale on the centreline of both

grids.
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Figure 8: Streamwise profiles of the mean velocity on the

centreline of both grids.

velocity fields saved with a period of 2.42 10−2Meff/U∞.

For the fractal square grid, the observation of the animations

suggests that the streamwise location of xpeak is oscillat-

ing between 8.6Meff and 10.2Meff (the movie is avalaible

at http://media.efluids.com/galleries/all?medium=534). It

seems that these oscillations are directly linked to the fre-

quency of the big wakes generated by the biggest square of

the grid.
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Figure 9: Streamwise profiles of turbulent intensities on the

centreline of both grids.

Even if very close to the grid the turbulent intensities are

much higher behind the regular grid, it should be noticed
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that these turbulent intensities are more than at least twice

bigger behind the fractal square grid after x ≈ 10Meff .

Indeed, at the end of the computational domain, we have

u′/U∞ ≈ 6% for the fractal square grid and only ≈ 2.5%

for the regular grid. The fractal square grid for the same

blockage ratio and same Reynolds number ReMeff
is able

to generate far downstream much more turbulence than the

regular grid.
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Figure 10: Lateral profiles of the turbulent intensities

u
′

/Uinfty at z/Meff = 0 for x = 15, 21, 27 and 33Meff .

Figure 10 shows that the turbulent intensities are ap-

proximately homogeneous across the lateral directions for

the regular grid where x ≥ 15Meff whereas they are not

for the fractal square grid up until x ≈ 33Meff . Indeed,

we observe a small increase of the turbulent intensities near

the lateral boundaries of the computational domain, prob-

ably resulting from the biggest square of the grid. These

two peaks seem to move toward the centreline of the grid:

at x = 15Meff , the peaks are at y = ±3.4Meff and at

x = 33Meff , they are at y = ±2.8Meff . It should be noted

that, as already shown on the centreline, the fractal square

grid generates much higher turbulent intensities than the

regular grid, for the same Reynolds number ReMeff
. For

example, at x = 33Meff , u′/U∞ ≈ 8.5% for the fractal

square grid near the lateral boundaries and only ≈ 2.5% for

the regular grid (3.4 times bigger).

In figure 11, we plot the lateral and diagonal profiles

for each grid of the mean velocity at 4 different streamwise

locations. The mean velocity profile for the fractal square

grid is not uniform in the lateral and diagonal directions as

it has a jet-like inhomogeneity whereas the respective profile

for the regular grid is clearly homogeneous. The results are

in good agreement with the experimental results of Hurst

& Vassilicos (2007) (see figure 35a of their paper) despite

a number of fractal iterations reduced from 4 to 3. They

suggest that the inhomogeneities are jet-like because fractal

square grids are characterized by a clear empty strip in the

region near the centreline in the z direction. Note finally that

we have checked that 1

LyLz

∫ Ly/2

−Ly/2

∫ Lz/2

−Lz/2
udydz = U∞ for

many planes normal to the streamwise direction.

Some of these initial observations can be investigated a

bit further in terms of frequency power spectra of the stream-

wise velocity (figure 12). These power spectra, obtained on

the centreline at four different streamwise locations, are cal-

culated using the periodogram technique (see Press et al.

(1992) for more details about this technique). Eleven se-

quences are used here, corresponding to a global time dura-

tion equal to 28.35Meff /U∞ overlapped at 50%, with the

use of a Hanning window. Close to the grid (x = 4.5Meff ),
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Figure 11: Lateral (top) and diagonal (bottom) profiles of

the mean velocity U/U∞ for x = 15, 21, 27 and 33Meff . The

lateral profiles are at z = 0 and the diagonal ones are along

the y = z line.
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Figure 12: Power spectra of the streamwise velocity on the

centreline of the grids for x = 4.5, 15, 27 and 33Meff .

the flow is clearly not fully turbulent for the fractal square

grid and not fully homogeneous for the regular grid, yet a

−5/3 scaling region exists in both cases. For the three other

streamwise location, and in agreement with the previous ob-

servations, the power spectra for the fractal square grid take

much larger values than those for the regular grid.
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CONCLUSION

Two spatially evolving turbulent flows generated by a

regular and a fractal square grid have been investigated by

means of DNS. One of the main results is that the frac-

tal square grid is able to generate much higher turbulent

intensities than a regular grid for the same Reynolds num-

ber ReMeff
and the same blockage ratio. For the fractal

square grid, we have been able to recover the two differ-

ent regions already observed in the experiments of Hurst &

Vassilicos (2007): a production region where the flow is non-

homogeneous and where the turbulence peaks followed by a

decay region.

Further DNS will be required to investigate in more de-

tail the spatial evolution of the turbulent flow generated by

a fractal square grid. First, it could be interesting to ex-

periment with the ability of fractal grids to independently

control pressure drop and turbulence intensity. It is possible

to tune them as very efficient mixers if pressure drop is made

low by lowering blockage ratio whilst making turbulence in-

tensities high by increasing the thickness ratio tr between

successive fractal iterations (See Coffey et al, 2007 and Hurst

& Vassilicos, 2007). Alternatively, it might be possible to

tune them as silent airbrakes if the pressure drop is made

high and turbulence intensity low. Coffey et al (2007) have

already shown in their water tunnel investigations that frac-

tal square grids can be designed as stirring elements for inline

static mixers and that they compare favourably with com-

mercially available state-of-the-art stirring elements.

Another future direction of investigation concerns the

behaviour of the turbulence in the decay region. In their

experimental measurements, Hurst & Vassilicos (2007) and

Seoud & Vassilicos (2007) have shown that, beyond the

peak position, the turbulence decays freely but in a way

that is qualitatively, as well as quantitatively, different from

any turbulence decay previously observed in experiments

and simulations: the turbulence decays exponentially (which

means slowly to start with and eventually fast) with both

macro and micro flow length-scales approximately constant

along the decay region. The turbulence in these experi-

ments is homogeneous for x > xpeak, which is not the case

in the current simulation. However, the number of fractal

iterations is 3 here whereas it is equal to 4 or 5 in these ex-

periments. Hence, this number seems to play a role in the

distance from the grid where the turbulence becomes homo-

geneous. This will be investigated in the future. Finally,

a large range of tr will need to be studied with different

numbers of fractal iterations and larger Reynolds numbers

ReMeff
so as to be closer to the experimental measurements

of Hurst & Vassilicos (2007) and Seoud & Vassilicos (2007).
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