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ABSTRACT

It has been recognized that the turbulent cross helicity

(correlation between the velocity and magnetic-field fluctu-

ations) can play an important role in several magnetohy-

drodynamic (MHD) plasma phenomena such as the global

magnetic-field generation, turbulence suppression, etc. De-

spite its relevance to the cross-helicity evolution, little atten-

tion has been given to the dissipation rate of the turbulent

cross helicity. In this paper, we consider the dissipation

rate of the turbulent cross helicity and propose an algebraic

model and an evolution equation of the cross-helicity dis-

sipation rate (εW equation). We apply the model to the

solar-wind turbulence, where several observations have been

made on the turbulent cross helicity, and validate the model

of cross-helicity dissipation. It is shown that, as far as the

solar-wind application is concerned, the simplest possible

algebraic model is useful enough to elucidate the spatial evo-

lution of the solar-wind turbulence.

INTRODUCTION

In the magnetohydrodynamic (MHD) turbulent flow at

high magnetic Reynolds number (Rm � 1), magnetic fields

are considered to be frozen in plasmas, and move with the

flow (Alfvén, 1950). In such a flow, the induced mag-

netic field is often much larger than the originally imposed

field. Besides, MHD waves such as the Alfvén wave are

ubiquitously observed. The cross helicity, defined by the

correlation between the velocity u and magnetic field b, is a

possible describer of such MHD turbulence properties. Ac-

tually, the magnetic-field generation due to the turbulent

cross helicity has been investigated (Yoshizawa, 1990, 1998;

Yoshizawa and Yokoi, 1993; Yoshizawa et al., 2003; Yokoi,

1996, 1999).

As is well known, the total amount of cross he-

licity
∫

V
u · bdV , as well as that of the MHD energy

∫

V
(u2 + b

2)/2 dV , is an inviscid invariant of the incom-

pressible MHD equations. Thanks to this conservative prop-

erty, the turbulent MHD energy and cross-helicity densities,

K ≡ 〈u′2 + b
′2〉/2 and W ≡ 〈u′ · b′〉, play a central role

in the turbulence modeling of MHD fluids (u′: velocity

fluctuation, b
′: magnetic-field fluctuation, 〈· · ·〉: ensemble

average). The equations of K and W are similar in form

and their mathematical structures are quite simple. They

are written as

DG

Dt
≡
(

∂

∂t
+ U · ∇

)

G = PG − εG + ∇ · TG, (1)

where G = (K, W ) and U is the mean velocity. Here, PG,

εG, and TG are the production, dissipation, and transport

rates of the turbulent statistical quantity G. They are de-

fined by

PK = −Rab ∂Ua

∂xb
− EM · J, (2a)

εK = ν

〈

(

∂u′a

∂xb

)2
〉

+ λ

〈

(

∂b′a

∂xb

)2
〉

≡ ε, (2b)

TK = WB −
〈(

u
′2 + u

′2

2
+ p′M

)

u
′ +

(

u
′ · b′

)

b
′

〉

,

(2c)

PW = −Rab ∂Ba

∂xb
− EM · Ω, (3a)

εW = (ν + λ)

〈

∂u′a

∂xb

∂b′a

∂xb

〉

, (3b)

TW = KB −
〈

(

u
′ · b′

)

u
′ −

(

u
′2 + u

′2

2
− p′M

)

b
′

〉

.

(3c)

Here, B is the mean magnetic field, Ω the mean vorticity, ν

the kinetic viscosity, λ the magnetic diffusivity, and p′
M

the

fluctuation part of the MHD pressure pM(≡ p + b
2/2). The

Reynolds stress R and the turbulent electromotive force EM

are defined by

Rαβ ≡
〈

u′αu′β − b′αb′β
〉

, (4)

EM ≡
〈

u
′ × b

′
〉

. (5)

In Eq. (3a), PW represents the W production rate due to

the coupling of the inhomogeneities of the mean fields with

the fluctuation. It is mainly in the context of PW associated

with the turbulent dynamo that the cross-helicity effect has

been investigated so far.

The dissipation rate of the turbulent cross helicity, εW ,

represents the effects of molecular viscosity and magnetic dif-

fusivity connected with the small-scale fluctuations. Some

investigations have been made on εW in the homogeneous

isotropic MHD turbulence studies (Grappin et al., 1982,

1983). However, almost no work has ever been done on

εW in the context of the inhomogeneous turbulence. This

situation may be related to the general tendency of ignoring

the turbulent cross helicity itself. Almost sole exception lies

in the solar-wind studies by satellite, where details of the

spectrum of the cross helicity have been examined (Belcher

and Davis, 1971; Roberts et al., 1987; Tu and Marsch, 1995).

However, the arguments on the dissipation rate of W are still

far from sufficient.

As we see from Eq. (1), in order to properly consider the

evolution of the turbulent cross helicity W , it is indispens-

able to estimate the dissipation rate of W , εW . In this work,

we will delve into this problem with the aid of the compar-

isons of the results of turbulence model with the satellite

observations.

EQUATION FOR THE CROSS-HELICITY DISSIPATION

RATE

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

708

미정댁
메인/컨텐츠



From the equations of the fluctuation velocity and mag-

netic field, we construct the exact equation for the dissipa-

tion rate of the cross helicity, εW , as

DεW

Dt
≡
(

∂

∂t
+ U · ∇

)

εW

= (ν + λ)

〈

∂u′a

∂xc

∂b′b

∂xc
− ∂b′a

∂xc

∂u′b

∂xc

〉

∂Ua

∂xb

+(ν + λ)

〈

∂u′a

∂xc
b′b − u′b ∂b′a

∂xc

〉

∂2Ua

∂xb∂xc

+(ν + λ)

〈

∂u′b

∂xa

∂2u′b

∂xa∂xc
+

∂b′b

∂xa

∂2b′b

∂xa∂xc

〉

Bc

+(ν + λ)

〈

∂u′c

∂xa

∂u′c

∂xb
− ∂b′c

∂xa

∂b′c

∂xb

〉

∂Ba

∂xb

−(ν + λ)

〈

∂u′a

∂xc

∂u′a

∂xc
− ∂b′a

∂xc

∂b′a

∂xc

〉

∂Ba

∂xb

−(ν + λ)

〈

∂u′a

∂xc
u′b − ∂b′a

∂xc
b′b
〉

∂2Ba

∂xb∂xc

−(ν + λ)

〈

∂u′b

∂xa

∂u′c

∂xa

∂b′b

∂xc

〉

− (ν + λ)

〈

∂b′b

∂xa

∂u′c

∂xa

∂u′b

∂xc

〉

+(ν + λ)

〈

∂u′b

∂xa

∂b′c

∂xa

∂b′b

∂xc

〉

+ (ν + λ)

〈

∂b′b

∂xa

∂b′c

∂xa

∂b′b

∂xc

〉

−(ν + λ)

〈

(u′c ± b′c)
∂

∂xc

(

∂u′b

∂xa

∂b′b

∂xa

)〉

+(ν + λ)
∂

∂xc

〈

1

2
b′c

∂

∂xa

(

u′b ± b′b
)

〉

−(ν + λ)

〈

∂b′b

∂xa

∂2p′
M

∂xa∂xb

〉

+ (ν + λ)
∂2

∂xc∂xc
εW

−(ν + λ)
∂

∂xc

[

ν

〈

∂u′b

∂xa

∂2b′b

∂xa∂xc

〉

+ λ

〈

∂b′b

∂xa

∂2u′b

∂xa∂xc

〉]

−(ν + λ)2

〈

∂2u′b

∂xa∂xc

∂2b′b

∂xa∂xc

〉

. (6)

This equation, lacking the connection with a conservative

law, has a considerably complicated structure. This is in

sharp contrast to the K and W equations [Eq. (1)].

In the hydrodynamic case with an electrically non-

conducting fluid, the energy dissipation rate

ε ≡ ν

〈

∂u′a

∂xb

∂u′a

∂xb

〉

, (7)

as well as the turbulent energy k ≡
〈

u
′2
〉

/2, plays a central

role in turbulence modeling (Launder and Spalding, 1972).

From the equation of the velocity fluctuation, we write the

ε equation exactly as

Dε

Dt
≡
(

∂

∂t
+ U · ∇

)

ε

= −2ν

〈

∂u′b

∂xa

∂u′c

∂xa

∂u′b

∂xc

〉

− 2

〈

(

ν
∂2u′b

∂xa∂xc

)2
〉

−2ν

〈

∂u′a

∂xc

∂u′b

∂xc
− ∂u′a

∂xc

∂u′b

∂xc

〉

∂Ua

∂xb

−2ν

〈

u′b ∂u′a

∂xc

〉

∂2Ua

∂xb∂xc

+
∂

∂xc

[

−ν

〈

(

∂u′b

∂xa

)2
〉

− 2ν

〈

∂p′

∂xb

∂u′a

∂xb

〉

]

+ν
∂2

∂xc∂xc
ε. (8)

The mathematical structure of this equation is also compli-

cated because of the lack of the connection with a conserva-

tive law.

The energy dissipation ε itself is dominant at small scales.

Using this, the length and velocity scales are estimated as

|x| ∼ ν3/4ε−1/4, |u′| ∼ ν1/4ε1/4, (9)

respectively. Using Eq. (9), we can estimate each term in

Eq. (8). In the flow at high Re (ν → 0), two terms behaving

as O(ν−1/2ε3/2) are dominant, and these two terms should

balance each other (Tennekes and Lumley, 1972; Yoshizawa,

1998)

−2ν

〈

∂u′a

∂xb

∂u′a

∂xc

∂u′b

∂xc

〉

∼ 2

〈

(

ν
∂2u′a

∂xb∂xc

)2
〉

. (10)

In other word, in the modeling of the ε equation, it is of

crucial importance to properly estimate the two terms in

Eq. (10).

In the hydrodynamic turbulence modeling, an empirical

model equation for ε:

Dε

Dt
≡
(

∂

∂t
+ U · ∇

)

ε = Cε1
ε

k
Pk − Cε2

ε

k
ε + ∇

(

νT

σε
∇ε

)

(11)

was proposed and has been widely accepted as useful.

Here, Cε1, Cε2, and σε are model constants. The val-

ues of these constants have been optimized through various

applications of the k − ε model. Usually, the values of

Cε1 = 1.4, Cε2 = 1.9, σε = 1.0 (12)

are adopted (Launder and Spalding, 1972).

Equation (11) is based on an empirical inference that the

dissipation should be larger where the turbulence is larger,

and is derived by dimensional analysis. However, it is also

pointed out that the system of constants given by Eq. (12)

is not a unique combination for the model constants because

ε equation can take an infinite number of self-similar states

(Rubinstein and Clark, 2005).

A similar argument using Eq. (9) can be applied to the

exact equation for the dissipation rate of the turbulent cross

helicity [Eq. (6)]. The difference between the molecular vis-

cosity ν and the magnetic diffusivity λ is expressed by the

magnetic Prandtl number:

Pm ≡ ν/λ. (13)

If we estimate each term in Eq. (6) under the simplest pos-

sible condition of Pm = 1, we have a dominant balance

between the terms expressed by

(ν + λ)

〈

∂u′b

∂xa

∂u′c

∂xa

∂b′b

∂xc

〉

∼ ν−1/2ε3/2, (14a)

(ν + λ)2

〈

∂2u′b

∂xa∂xc

∂2b′b

∂xa∂xc

〉

∼ ν−1/2ε3/2 (14b)

in the εW equation at the high Reynolds number flow.

MODELS FOR THE DISSIPATION OF THE TURBULENT

CROSS HELICITY

Algebraic model
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As was mentioned in the previous section, the equation

governing the dissipation rate of W , εW , has very compli-

cated form. In such a situation, the simplest possible model

for εW is the algebraic approximation as follows.

Using the turbulent MHD energy K and its dissipation

rate ε, we construct a characteristic time scale of turbulence

as

τ = K/ε. (15)

With the aid of this time scale, the dissipation rate of W

can be modeled as

εW = CW
ε

K
W, (16)

where CW is the model constant. Namely, we consider the

dissipation of the turbulent cross helicity is proportional to

the turbulent cross helicity divided by the time scale.

It is worth noting a mathematical constraint on the cross

helicity: the magnitude of the turbulent cross helicity W is

bounded by the magnitude of the turbulent MHD energy K

as
|W |
K

=
|〈u′ · b′〉|

〈u′2 + b′2〉/2
≤ 1. (17)

This relation constrains the value of εW . Actually, from

Eq. (1), the turbulent cross helicity scaled by the turbulent

MHD energy, W/K, is subject to

D

Dt

W

K
=

W

K

(

1

W

DW

Dt
− 1

K

DK

Dt

)

=
W

K

(

1

W
PW − 1

K
PK

)

− W

K

(

1

W
εW − 1

K
ε

)

+
W

K

(

1

W
TW − 1

K
TK

)

. (18)

In the homogeneous turbulence, where the production and

transport rate vanish, Eq. (18) is reduced to

∂

∂t

W

K
= −

(

1

W
εW − 1

K
ε

)

W

K
. (19)

It follows that the condition for |W |/K being below the unity

[Eq. (17)] is expressed as

|εW |
ε

>
|W |
K

. (20)

Model equation for the cross-helicity dissipation rate (εW

equation)

We see from Eq. (1) that the equations of W and K

are written in a similar form. So, it is natural to consider

that the equation of the dissipation rate of W , εW , can

be expressed in a form similar to the equation of the K

dissipation rate ε. Then we consider the equation for εW as

DεW

Dt
= CW1

ε

K
PW −CW2

ε

K
εW +∇·

(

νK

σεW
∇εW

)

, (21)

where CW1, CW2, and σεW are the model constants.

In the equation of the K dissipation rate, ε equation

[Eq. (38) below], the model constants are same as the ones

appearing in the dissipation rate of the hydrodynamic (HD)

or non-MHD turbulence energy, ε equation [Eq. (11)]. This

is a consequence of the requirement that the ε equation for

MHD turbulence should be reduced to the ε equation for

the HD in the limit of the vanishing magnetic field (B =

0,b′ = 0). In contrast, the cross helicity, defined by the

correlation between the velocity and magnetic field, vanishes

in the limit of the vanishing magnetic field. As this result, as

far as the εW equation is concerned, we can not make use of

the knowledge accumulated in the history of HD turbulence

modeling. In this sense, at present, we do not have enough

information regarding the model constants CW1, CW2, and

σεW in Eq. (21).

A MODEL FOR MHD TURBULENCE

One of the prominent features of turbulence is its wide

ranges of scales. We have continuous scales of motions rang-

ing from the energy-containing scale, in which energy is

injected to turbulence through the inhomogeneity of mean

fields, to the dissipation or Kolmogorov scale where the dis-

sipation plays a dominant role. Owing to this breadth of

scales, it is impossible in the foreseeable future to simultane-

ously solve all the scales of turbulence at the high Reynolds

number encountered in the real-world flow of interests. In

such a situation, the notion of turbulence modeling provides

a useful tool for analyzing the real-world turbulence phe-

nomena. In the turbulence modeling, small-scale motions

are modeled, and turbulence effects are incorporated into

the analysis of the large-scale or mean motions.

In an MHD fluid, the mean fields obey

Equation of continuity:

∂ρ̄

∂t
+ ∇ · (ρ̄U) = 0, (22)

Momentum equation:

∂U

∂t
+ ∇ · (UU − BB) = −∇PM + ∇ · R + ν∇2

U, (23)

Magnetic induction equation:

∂B

∂t
= ∇× (U × B) + ∇× EM + λ∇2

B, (24)

Solenoidal condition for the magnetic field:

∇ · B = −1

2
(B · ∇) ln ρ̄. (25)

Here, ρ̄ is the mean density. For the sake of simplicity, the

fluctuation part of the density has been neglected (ρ′ = 0).

Note that the magnetic field etc. are measured in the Alfvén

speed unit. They are related to the ones measured in the

original unit (asterisked) as

b =
b∗

(μ0ρ)1/2
, j =

j∗

(ρ/μ0)1/2
, e =

e∗

(μ0ρ)1/2
. (26)

Measured in the Alfvén speed unit, the solenoidal condition

of the original mean magnetic field:

∇ · B∗ = 0 (27)

is expressed as Eq. (25).

Equations (23) and (24) show that the Reynolds stress R
and the turbulent electromotive force EM defined by Eqs. (4)

and (5), represent the turbulence effects in the mean-field

equations. Estimating these correlations are of central im-

portance in the study of inhomogeneous turbulence. In order

to close the system of equations they should be modeled in

terms of the mean-field quantities. Here, we adopt

Rαβ =
2

3
KRδαβ − νKSαβ + νMMαβ , (28)

EM = αB − β∇× B + γ∇× U, (29)
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where S and M are the strain rates of the mean velocity

and the mean magnetic field:

Sαβ =
∂Ua

∂xb
+

∂Ub

∂xa
− 2

3
δαβ∇ · U, (30a)

Mαβ =
∂Ba

∂xb
+

∂Bb

∂xa
− 2

3
δαβ∇ · B. (30b)

We should note that the transport coefficients appear-

ing in Eqs. (28) and (29), νK, νM, α, β, and γ, are

not adjustable parameters, but should be determined self-

consistently through the dynamic properties of turbulence.

They in general depend on location and time. In this work,

we adopt model expressions for them as

α = CατH, β =
5

7
νK = CβτK, γ =

5

7
νM = CγτW,

(31)

where τ denotes the time scale of turbulence. The model

constants Cα, Cβ , and Cγ are estimated as

Cα � 0.02, Cβ � 0.05, Cγ � 0.04 (32)

(Yoshizawa, 1998).

In the Reynolds-averaged turbulence model, properties

of turbulence are represented by some statistical quantities.

We adopt the turbulent MHD energy K, its dissipation rate

ε, the turbulent cross helicity W , and the turbulent residual

energy KR as the turbulence statistical quantities. They are

defined by

K ≡ 1

2

〈

u
′2 + b

′2
〉

, (33)

ε ≡ ν

〈

(

∂u′a

∂xb

)2
〉

+ λ

〈

(

∂b′a

∂xb

)2
〉

, (34)

W ≡
〈

u
′ · b′

〉

, (35)

KR ≡ 1

2

〈

u
′2 − b

′2
〉

. (36)

In this work, we assume the α- or turbulent residual-helicity

[H(≡ 〈−u
′ · ω′ + b

′ · j′〉)]-related term in Eq. (29) is much

smaller than the γ- or cross-helicity-related term, and ne-

glect the former. So, we do not include the evolution equa-

tion of H. As for the equation of H, you are referred to

Yoshizawa (1998; 1999) and Yokoi et al. (2008).

If we take the effects of mean-density variation into ac-

count, the evolution equations for the statistical quantities

are written as

∂K

∂t
= − (U · ∇) K − 1

6
(3K + KR)∇ · U

+
1

2
(νKS2 − νMS : M) + βJ

2 − γΩ · J
−ε + ∇ · (WB) + ∇ · (νK∇K) , (37)

∂ε

∂t
= − (U · ∇) ε+Cε1

ε

K
PK−Cε2

ε

K
ε+∇·

(

νK

σε
∇ε

)

, (38)

∂W

∂t
= − (U · ∇) W − 1

2
W∇ · U

+
1

2

(

νKS : M − νMM2
)

+ βΩ · J − γΩ
2

−εW + ∇ · (KB) + ∇ ·
(

νK

σW
∇W

)

, (39)

∂KR

∂t
= − (U · ∇) KR − 1

6
(K + 3KR)∇ · U

+
1

2
νR(S2 − M2) − εR + ∇ ·

(

νK

σR

∇KR

)

.(40)

Here νR denotes the residual turbulent viscosity defined by

νR = νK

KR

K
. (41)

The dissipation rate of the turbulent cross helicity, εW

[Eq. (3b)], is estimated by Eq. (16) or alternatively, by

Eq. (21).

The dissipation rate of KR, εR, can be expressed as

εR =

(

1 + Cr
B

2

K

)

ε

K
KR (42)

(Yokoi 2006). Here, Cr and σR are positive model constants.

The large-scale behavior of KR depends on the choice of

these constants. At this stage of modeling, we do not insist

on fine tuning of the model constants, but roughly put them

Cr = 0.01, σR = 1.0. (43)

Equation (42) as a whole will destruct the turbulent

residual energy, and return MHD turbulence to equiparti-

tion. The first part in the parentheses of Eq. (42) represents

the KR destruction due to the eddy distortion. The second

part represents the destruction of KR due to the mean mag-

netic field. The latter corresponds to the Alfvén effect, in

which the presence of the mean magnetic field leads MHD

turbulence to an equipartition state between the kinetic and

magnetic energies (Iroshnikov, 1964; Kraichnan, 1965; Pou-

quet et al., 1976; Yokoi, 2006).

Equation (42) may be reinterpreted as the modulation of

MHD-turbulence time scale due to the mean magnetic field:

τ =
K

ε
→

(

1 + χ
B

2

K

)−1
K

ε
, (44)

where χ(= Cr) represents the synthesization ratio of time

scales. Equation (43) infers that we should put the ratio as

χ = O(10−2). (45)

As for an example considering the synthesized time scale of

MHD turbulence, you are referred to Yokoi et al. (2008) and

references cited therein.

AN APPLICATION TO THE SOLAR-WIND TURBULENCE

Solar-wind turbulence

Solar wind is a continuous plasma flow blown away from

the coronal bases to the solar-system space. Its origin is

considered to be the violent magnetic activities on the solar

surface. The streams from the low- or mid-latitude region

whose typical speed is 400 km s−1 are called the slow wind.

On the other hand, the streams from the high-latitude re-

gion such as coronal hole whose typical speed is 800 km s−1

are called the fast wind. It is known that the slow wind

has a large velocity shear, while the fast wind has sub-

stantially no velocity shears. The influence of an explosive

magnetic activity on the solar surface is conveyed to the

magnetosphere of the Earth within several days, and terres-

trial environments may be affected much. A direct exposure

to a high-energy particle convected by the solar wind is quite

harmful to astronauts and electric devices on the satellite.

So it is highly desirable to predict the behavior of the solar

wind: A problem of the space weather (Figure 1).

Satellite observations have revealed the statistical prop-

erties of the solar-wind turbulence including the velocity,
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bow shock

magnetopause

plasmasphere

solar wind

Sun

Earth
corona

Figure 1: Solar wind and terrestrial environments. The solar

wind, a high speed plasma flow of several hundreds km s−1,

interacts with the terrestrial magnetosphere to induce sev-

eral phenomena such as substorms, auroras.

magnetic field, density, etc. It has been investigated how

MHD turbulence evolves in the large-scale velocity and

magnetic-field structures (Belcher and Davis, 1971; Roberts,

et al., 1987; Tu and Marsch, 1995). According to the obser-

vations, the solar-wind turbulence shows a strong Alfvénicity

near the Sun. Namely, there is a strong correlation between

the velocity and magnetic-field fluctuations, and equiparti-

tion between the kinetic and magnetic turbulent energies

is realized. At the same time, it is pointed out that this

Alfvénicity decays as the heliocentric distance increases (Tu

and Marsch, 1995). One of the main unsolved problems in

this field is the spatial evolutions of the turbulent cross he-

licity W and the Alfvén ratio rA (Roberts et al., 1990).

The magnitude of the scaled turbulent cross helicity,

|W |/K, whose value is almost unity near the Sun, decreases

as the heliocentric distance increases. In the region with

larger mean-velocity shear, the decay rate of |W |/K is larger.

The value of |W |/K far from the Sun is small (0− 0.2). On

the other hand, in the region with smaller mean-velocity

shear, the decay of |W |/K is suppressed. The value of

|W |/K remains to be large (0.4 − 0.7) even far from the

Sun (Goldstein et al., 1990). The previous models could not

reproduce this large value of the scaled W in the region with

small or almost no mean-velocity shear.

On the other hand, the Alfvén ratio rA is defined by the

ratio of the turbulent kinetic and magnetic energies:

rA ≡ 〈u′2〉
〈b′2〉 . (46)

This ratio is almost unity near the Sun, then decreases with

the heliocentric distance. At about 3 AU (astronomical unit:

1 AU = 1.5×1011 m) from the Sun, rA reaches 0.5 and there-

after remains to be the same (∼ 0.5) with the heliocentric

distance as long as the observations exist:

rA � 0.5 for r ≥ 3 AU. (47)

Previous research could not properly explain this stationary

value of 0.5 (Tu and Marsch, 1995).

In this work, we address these problems from the view-

point of the turbulence model. In particular, we examine

how the large-scale spatial evolution varies as the model for

the turbulent cross-helicity dissipation rate changes.

Numerical simulations

We examine the evolution of the turbulent statistical

quantities under the prescribed mean velocity and magnetic

field. For the choice of the mean fields, we fully utilize the

current theory and modeling of the solar wind. The mag-

netic rotator model of the solar wind takes the effects of

rotation and magnetic field into consideration (Parker, 1958;

Weber and Davis, 1967), and known to be a good approxi-

mation for the mean velocity and magnetic field of the solar

wind. However, its large-scale velocity and magnetic-field

shears are weak as compared with the large-scale shears in

the slow–fast-wind and magnetic-sector boundaries. So, the

adopted mean-field profile is suitable for representing rela-

tively calm flow fields within one magnetic sector.

First, we adopt the algebraic expression [Eq. (16)] for

the dissipation of the turbulent cross helicity. In this case,

Eq. (20) is rewritten as

CW > 1. (48)

Namely, the model constant CW for εW in the W equation

should be larger than the counterpart (= 1) for ε in the K

equation.

In this work, we adopt

CW = 1.4, σW = 1.0. (49)

Here, we should note the following point. In Yokoi and

Hamba (2008), CW = 1.8 was adopted for the algebraic

model constant for εW . As was mentioned above, the as-

sumed mean fields correspond to a weak-shear case in which

W is expected to show no considerable decay. If we con-

sider this fact, we see that the less dissipative value for CW

[Eq. (49)] is more suitable than the more dissipative value

of CW = 1.8 previously adopted.

Results

Alfvén ratio. The evolution of Alfvén ratio rA does not

depend so much on the value of CW . In the case of higher

velocity shear, the large scale evolution of rA shows a more

stationary behavior, which is in better agreement with the

observations. As was already mentioned, if we made the fine

tuning of Cr value, the agreement of the simulation results

and observations becomes better. In this work, however, we

do not do such fine tuning, and made only a rough estimate

of the constants as in Eq. (43).

Cross helicity. The simulated cross helicity W is shown

in Figure 2 with the comparisons with the observations and

with the previous work.
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Figure 2: The radial evolution of the scaled turbulent cross

helicity W . ◦: observations (Roberts et al. 1987); ——:

the present model; · · · · · ·: the present model with enhanced

shear. Previous work, - - -: Zhou and Matthaeus (1990); —

— —: Tu and Marsch (1993).
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The radial evolution of the cross helicity in the higher

velocity shear shows better agreement with the observa-

tions. The mean fields adopted in this work correspond to

a weak-shear case, while the observations were performed

in situations with stronger shears. Then, the tendency that

the simulation results in the high-shear case are in better

agreement is preferable. This agrees with the observational

findings that in the fast solar wind, which has a small ve-

locity shear, the scaled turbulent cross helicity is kept large

without decaying. In the simulation with a weak shear, the

scaled turbulent cross helicity, |W |/K, is about 0.5 at 3 AU

and about 0.3 at 10 AU, which are kept relatively large val-

ues.

From this agreement of the numerical simulation with

the observations, we see that the algebraic-model expression

for εW [Eq. (16)] is good enough, as far as the application

to the solar wind is concerned.

Cross helicity and velocity shear

The magnitude of the scaled turbulent cross helicity

|W |/K decays much in the slow-wind region where the veloc-

ity shear is strong, while |W |/K decays less in the fast-wind

region where the shear is weak (Goldstein et al., 1995). This

basic tendency can be elucidated from the viewpoint of tur-

bulence model through a simple argument.

The equation for |W |/K is given by Eq. (18). Among

the terms, we pick up the production-related terms which

are directly connected to the mean-velocity shear as

D

Dt

W

K
=

(

1

W
PW − 1

K
PK

)

W

K
− · · · . (50)

We substitute the expressions for PW [Eq. (3a)] and PK

[Eq. (2a)] with Eqs. (28) and (29) into Eq. (50). Then, we

have a contribution from the mean-velocity shear as

D

Dt

W

K
= · · · − 7

10
Cβ

K

ε
S2 W

K
+ · · · . (51)

Since both Cβ and K/ε are positive, in the presence of

the mean-velocity shear, irrespective of the sign of W/K,

it works for a decrease in the magnitude of W/K.

If we scrutinize the production rate of the turbulent cross

helicity W , we see that whether W may increase or decrease

depends on the coupling of the mean velocity and magnetic-

field shears. At the same time, the turbulent MHD energy K

always increases in the presence of the mean-velocity shear.

As this result, the magnitude of the turbulent cross helicity

scaled by the turbulent MHD energy, |W |/K, will decrease

in the presence of the mean-velocity shear in the primary

sense. The present model reflects this mechanism properly.

So, this model is particularly promising for describing the

evolution of the solar-wind turbulence.

CONCLUSION

A turbulence model for plasmas with four one-point tur-

bulent statistical quantities (the turbulent MHD energy K,

its dissipation rate ε, the turbulent cross helicity W , and

the turbulent residual energy KR) is proposed. The model

was applied to the solar-wind turbulence. In particular, two

possibilities of expressing the dissipation rate of W , εW ,

are examined. Namely, (i) the algebraic model and (ii) the

evolution equation for εW . It is shown that, as far as the

application to the solar-wind turbulence is concerned, the al-

gebraic model for εW with one model constant gives results

plausible enough.
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