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ABSTRACT

Different recirculation patterns have been recently dis-

covered in the electrically conducting flow around a magnetic

obstacle, Votyakov et al. (2007, 2008). This paper continues

the study and sheds new light on the core of the mag-

netic obstacle that develops between magnetic poles when

the interaction parameter N , which is a ratio of Lorentz

force to the inertial force, is very large. The core of the

magnetic obstacle is streamlined both by the upstream flow

and by the induced cross stream electric currents, like a

foreign insulated insertion placed inside the ordinary hydro-

dynamic flow. In the core, closed streamlines of the mass

flow resemble contour lines of electric potential, while closed

streamlines of the electric current resemble contour lines of

pressure.

INTRODUCTION

A magnetic obstacle is a region in the flow of an electri-

cally conducting fluid, e.g. liquid metal, where an external

inhomogeneous magnetic field, B, is applied as shown in

Fig. 1a. The rigid obstacle, such as a circular cylinder, is

impenetrable for a flow since it represents a foreign solid in-

sertion. The region of the magnetic obstacle manifests itself

through the braking Lorentz force, FL = j × B, originating

from the interaction of B with electrical currents j. The

electrical currents are induced because of the electromotive

force arising when the conducting liquid moves through the

region of magnetic field.

Characteristics of the flow influenced by a magnetic ob-

stacle are of considerable fundamental and practical interest.

On the fundamental side, such a system possesses a rich va-

riety of dynamical states, Votyakov et al. (2007). On the

practical side, spatially localized magnetic fields enjoy a va-

riety of industrial applications in metallurgy, e.g. Davidson

(1999), including stirring of melts by a moving magnetic

obstacle (called electromagnetic stirring), removing unde-

sired turbulent fluctuations during steel casting using steady

magnetic obstacles (called electromagnetic brake) and non-

contact flow measurement using a magnetic obstacle (called

Lorentz force velocimetry, e.g. Thess et al. (2006)). It is

important to understand, for instance, whether the useful

turbulence-damping effect of a magnetic brake is not oblit-

erated by excessive vorticity generation in the wake of the

magnetic obstacle.

New results about the wake of a magnetic obstacle have

been reported recently by Votyakov et al. (2007, 2008). It

has been found that a liquid metal flow subject to a local

magnetic field shows different recirculation patterns: (1) no

vortices, when viscous force prevails at small Lorentz force,

(2) one pair of inner magnetic vortices between the mag-

netic poles, when Lorentz force is high and inertia small,

and (3) three pairs, namely, magnetic as above, connecting

and attached vortices, when Lorentz and inertial forces are

high. The latter six-vortex ensemble is shown in Fig. 1b.

The goal of the current presentation is to study effects

appearing in the laminar flow around the magnetic obsta-

cle when the interaction parameter N , which is a ratio of

Lorentz force to the inertial force, increases. When N is very

large, both mass transfer and electric field vanish in the re-

gion between magnetic poles. This region, hereinafter called

the core of the magnetic obstacle, looks as if frozen by the

external magnetic field so that the upstream flow and cross-

wise electric currents can not penetrate inside it. Thus, the

core of the magnetic obstacle is similar to a solid insulated

obstacle inside an ordinary hydrodynamical flow with cross-

wise electric currents and without an external magnetic field.

(This concerns hydrodynamics because there is no magnetic

field, and the crosswise electric currents go around the insu-

lated insertion without changing the mass flow.) Magnetic

vortices are located aside the core and compensate shear

stresses like a ball-bearing between the impenetrable region

and upstream flow.

The presented results are new and complementary to

those published in Votyakov et al. (2007, 2008). They re-

quired extensive sets of 3D numerical simulations: a series

of runs for large N to refine the core of the magnetic obsta-

cle.

It is worth to notice that our results for the core of a

magnetic obstacle can be qualitatively understood from Ku-

likovskii’s theory (Kulikovskii, 1968). In particular, mass

flow (electric charge) streamlines resemble contour lines of

the electric potential (pressure) in accordance to the main

idea of Kulikovskii (1968). Nevertheless, to obtain quanti-

tatively closed streamlines proper boundary conditions are

necessary. They are obtained usually by integration along

transverse magnetic field lines. This method works well

for slowly varying magnetic fields, e.g. fringing fields (Al-

boussiere, 2004) because the Hartmann layers can be cor-

rectly imposed at the crossing of the field lines with channel

walls. However, it is an open issue whether such an approach

is valid in the case of a magnetic obstacle.

MODEL, EQUATIONS, NUMERICAL METHOD

The governing equations for electrically conducting and

incompressible fluid are derived from the Navier-Stokes

equation coupled with the Maxwell equations for moving

medium and Ohm’s law. By assuming that an induced mag-

netic field is infinitely small in comparison to the external
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Figure 1: a - scheme of the magnetic obstacle created by two permanent magnets which are located on the top and bottom

of the channel where an electrically conducting liquid flows. b - structure of the wake of the magnetic obstacle consisting of

inner magnetic (first pair), connecting (second) and attached vortices (third pair). Dashed bold lines on b mark borders of the

magnets.

magnetic field, the equations in dimensionless form are:

∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
�u + N(j × B), (1)

j = −∇φ + u × B, (2)

∇ · j = 0, (3)

∇ · u = 0, (4)

where u is velocity field, B is an external magnetic field,

j is electric current density, p is pressure, φ is electric po-

tential. The Reynolds number, Re = u0H/ν, expresses a

ratio between the inertia force and the viscous force and

the interaction parameter, N = B2
0Hσ/(u0ρ), expresses a

ratio between the Lorentz force and the inertia force. Re

and N are linked with each other by means of the Hart-

mann number: Re N = Ha2, Ha = HB0(σ/ρν)1/2 which

determines the thickness δ of Hartmann boundary layers,

δ/H ∼ Ha−1, formed near the walls perpendicular to the

direction of the magnetic field in the flow under constant

magnetic field. Here, H is the characteristic length (size),

u0 is the characteristic flow velocity, B0 the characteristic

magnitude of the magnetic field intensity, ν is the kinematic

viscosity of the fluid, σ is the electric conductivity of the

fluid, and ρ is its density.

At given Re, N and B(x, y, z) the system of the partial

differential equations shown above is solved in a 3D compu-

tational domain to obtain the unknown u(x, y, z), p(x, y, z)

and φ(x, y, z). The computational domain has periodical

boundary conditions in the spanwise direction, and no-slip

and insulating top and bottom walls in the transverse direc-

tion. The electric potential at the inlet and outlet borders

is taken equal to zero. For the velocity, the outlet bound-

ary is force free, and a laminar parabolic velocity profile is

imposed at the inlet boundary. We are interested in a sta-

tionary laminar solution, hence, the initial conditions play

no role.

The origin of the right-handed coordinate system, x =

y = z = 0, is taken in the center of the magnetic gap.

The size of the computational domain is: −Lx ≤ x ≤ Lx,

−Ly ≤ y ≤ Ly , −H ≤ z ≤ H, where Lx = 25, Ly = 25,

H = 1 and x, y, z are respectively the streamwise, crosswise,

and transverse directions.

The characteristic dimensions for the Reynolds number

Re, and the interaction parameter N are the half-height of

the duct H, the mean flow rate u0, and the magnetic field

intensity B0 taken at the center of the magnetic gap, x =

y = z = 0. The range of the studied parameters is: Re =

0.1, 1, 10, 100 and 0 ≥ N ≥ 1000.

The external magnetic field is modelled as a field from

two permanent magnets occupying a space Ω = {|x| ≤
Mx, |y| ≤ My , |z| ≥ h}, where Mx = 1.5 (My = 2) is the

streamwise (spanwise) width of the magnet, and 2 × h is

the distance between magnetic poles. The magnets are sup-

posed to be composed of magnetic dipoles oriented along the

z-direction, therefore the total magnetic field B(x, y, z) =

∇ ∫Ω Bd(r, r′)dr′, where Bd(r, r′) = ∂z′ (1/|r−r′|) is a field,

at the point r = (x, y, z) created by the single magnetic

dipole located in the point r′ = (x′, y′, z′). The integration

can be performed analytically, see Votyakov et al. (2008),

and after cumbersome algebraic calculations one obtains:

Bx(r) =
1

B0

∑

k=±1

∑

j=±1

∑

i=±1

(ijk) arctanh

[

δj

δijk

]

,

By(r) =
1

B0

∑

k=±1

∑

j=±1

∑

i=±1

(ijk) arctanh

[

δi

δijk

]

,

Bz(r) = − 1

B0

∑

k=±1

∑

j=±1

∑

i=±1

(ijk)arctan

[

δiδj

δkδijk

]

,

where δi = (x − iMx), δj = (y − jMy), δk = (z − kh),

and δijk = [(x − iMx)2 + (y − jMy)2 + (z − kh)2]1/2. The

normalization factor B0 is selected in such a way to have the

intensity of the z-component equal one, Bz(0, 0, 0) = 1, in

the center of the magnetic gap. Three-fold summation with

the sign-alternating factor (ijk) reflects the fact that these

equations are obtained by integrating over the 3D box Ω.

Different cuts of the intensity B(r) are plotted in Fig. 3 and

Fig. 4(b) in the paper of Votyakov et al. (2008).

The 3D numerical solver has been explained in details

earlier, see Votyakov and Zienicke (2007). It was developed

from a free hydrodynamic solver created originally in the re-

search group of Prof. M. Griebel (Griebel et al. (1995)). The

solver employs the Chorin-type projection algorithm and fi-

nite differences on an inhomogeneous staggered regular grid.

Time integration is done by the explicit Adams-Bashforth

method that has second order accuracy. Convective and

diffusive terms are implemented by means of the VONOS

(variable-order non-oscillatory scheme) method. The 3D

Poisson equations are solved for pressure and electric po-

tential at each time step by using the bi-conjugate gradient

stabilized method (BiCGStab).

The numerical grid was regular and inhomogeneous,

Nx × Ny × Nz = 643. The minimal horizontal step size in
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Figure 2: Streamlines in the central plane, Re = 10, N =5(a), 10(b), 640(c). Dashed bold lines mark borders of the magnets.

As N gives rise, magnetic vortices move away each other by forming in between a core of the magnetic obstacle.

the region of the magnetic gap was Δx � Δy � 0.3, which

means that a few dozens points were used for resolving the

inner vortices in the core of the magnetic obstacle. The min-

imal vertical step size near the top and bottom (Hartmann)

walls was Δz = 0.005. This corresponds to using three to

five (= (1/Ha)/Δz) points to resolve Hartmann layer at

Ha = 40 − 70.

RESULTS

The goal of the simulations is to focus on the flow

around a magnetic obstacle at large interaction parameter

N . In order to achieve large N = Ha2/Re, the simula-

tions were started at a small interaction parameter and Ha

was smoothly increased, while keeping Re constant. Sev-

eral values of the Reynolds number were studied, Re =

0.1, 1, 10, 100, and no principal differences were found at the

same N . These low values of Re imply low inertial forces,

therefore, only two-vortex patterns were produced, without

connecting and attached vortices.

The natural way to visualize the core of the magnetic

obstacle is to plot streamlines of the flow in the central

horizontal plane as shown in Fig. 2 at different interaction

parameters N . Because N is the ratio of the Lorentz force

to the inertial force, the larger N is, the stronger the re-

tarding effect of the Lorenz force becomes. So, one observes

no vortices at N = 5, Fig. 2a; the appearance of weak cir-

cular magnetic vortices at slightly below N = 10, Fig. 2b;

and finally these vortices are well developed and strongly

deformed at very large N = 640, Fig. 2c. In the latter case,

the vortex streamlines envelop the bold dashed rectangle.

This rectangle denotes the borders of the external magnet;

inside the rectangle at large N one can see an island – a

core of the magnetic obstacle. The observed deformation of

the vortices and their drift from the center of the magnetic

gap are due to the tendency of the flow to reduce its friction

caused by retarding Lorentz force. The vortices are cam-

bered and located in the shear layer alongside the magnetic

gap in such a way that their rotation looks like the rotation

of a ball-bearing inside the wheel.

The quantitative analysis of the core was performed by

crosswise cuts through the center of the magnetic gap at

different arising magnetic interaction parameters N . These

cuts are shown in Fig. 3a for the streamwise velocity ux(y)

and in Fig. 3b for the electric potential φ(y). First, we dis-

cuss how the streamwise velocity changes as N increases.

As shown in the Fig. 3a (curve 1), for the small N = 0.1,

the velocity profile is only slightly disturbed with respect to

a constant. As N increases, the curves ux(y) pull further

down in the central part ucenter ≡ ux(0), see for example

curves 2 and 3. At N higher than a critical value Nc,m, i.e.

for curve 4, the central velocities ucenter are negative. This

means that there appears a reverse flow causing magnetic

vortices in the magnetic gap. When N rises even more (see

curves 5 and 6) the magnetic vortices become stronger and

simultaneously shift away from the center to the side along

the y direction, see insertion in Fig. 3a for curves 5 and 6.

Fig. 3(b) shows how the electric potential φ(y) varies

along the central crosswise cut through the magnetic gap.

The slope in the central point is the crosswise electric field,

Ey,center = −dφ/dy|y=0. One can see that Ey,center

changes its sign: it is positive at small N and negative at

high N . To explain why it is so, one can use the follow-

ing way of thinking. Any free flow tends to pass over an

obstacle in such a way so as to perform the lowest possi-

ble mechanical work, i.e. flow streamlines are the lines of

least resistance to the transfer of mass. The resistance of

the flow subject to an external magnetic field is caused by

the retarding Lorentz force Fx ≈ jyBz , so the flow tends

to produce a crosswise electric current, jy , as low as possi-

ble while preserving the divergence-free condition ∇ · j = 0.

To satisfy the latter requirement, an electric field E must

appear, which is directed in such a way, so as to com-

pensate the currents produced by the electromotive force

u × B. Next, we analyze the crosswise electric current

jy = Ey + (uzBx − uxBz). Due to symmetry in the center

of the magnetic gap By = Bx = uy = uz = jy = jz = 0

so jy = Ey − uxBz . This means that Ey tends to have

the same sign as ux in order to make jy smaller. At small

N , the streamwise velocity ux is large and positive, so the

electric field Ey is positive too. When the magnetic vortices

appear, there is a reverse flow in the center. Therefore, the

central velocity is negative now, and the central electric field

Ey,center is also negative.

The change of the electric field in the magnetic gap

can be explained in terms of the Poisson equation and

the concurrence between external and internal vorticity, see

Votyakov et al. (2008). Those arguments are also valid here,

however in contrast to the previous study we have no side

walls now, so the external vorticity in the present case plays

only a minor role. As a result, the reversal of the electric

field appears at a small N (approximately equal to five),

which is close to κ = 0.4 given in Votyakov et al. (2008).

The overall data about ucenter and Ey,center in the

whole range of studied N are shown in Fig. 4. One can see

that both characteristics start from positive values, then,

they cross the zeroth level, reach a minimum, go up again,

and finally vanish in the limit of high N . With respect to
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Figure 3: Streamwise velocity (a) and electric potential (b) along crosswise cuts of middle horizontal plane x = z = 0. Re = 10,

N =0.1(solid 1), 1.6(dot-dashed 2), 4.9(solid 3), 40(dashed 4), 250(solid 5), and 490(dot-dashed 6). Insertion shows magnified

plots for curves 5 and 6.
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Figure 4: Central streamwise velocity ucenter (a) and central spanwise electric field Ey,center (b) as a function of the interaction

parameter N . Nc,m is a critical value where the streamwise velocity is equal to zero. Insertion shows the definition of ucenter

and Ey,center.

the streamwise velocity, this means that, at hight N , there is

no mass flow in the center of the magnetic gap; the other ve-

locity components are equal to zero due to symmetry. With

respect to the crosswise electric field, this means that there

are no electric currents. This occurs because there is no mass

flow, therefore, the electromotive force vanishes, Ey goes to

zero, and the other electric field components are equal to

zero due to symmetry. Thus, one can say that the center of

the magnetic gap is frozen by the strong external magnetic

field, so that both mass flow and electric currents tend to

bypass the center. In other words, this means that a strong

magnetic obstacle has a core, and such a core is like a solid

insulated body, being impenetrable for the external mass

and electric charge flow.

When the inertia and viscous forces are negligible com-

pared to the Lorentz force and pressure gradients, then mass

flow streamlines must be governed by the electric poten-

tial distribution while the trajectories of the induced electric

current must be governed by pressure distribution. This is

derived straightforwardly from equations (1 – 2). Because

inertia and viscosity are vanishing, the equations (1 – 2)

become in the core and nearest periphery of the magnetic

obstacle:

∇p = j × B, ∇φ = −j + u × B ≈ u × B .

In the latter formula, j � ∇φ and u × B is the dominating

term. In the core of the obstacle, B = (0, 0, Bz) ≈ (0, 0, 1),

hence, the pressure (electric potential) is a streamline func-

tion for the electric current (velocity). These relationships

for the flow under the strong external magnetic field have

been published earlier by Kulikovskii (1968). In particular,

this led to the introduction of the concept of ”characteristic

surfaces” – surfaces of equal intensity of the external het-

erogenous magnetic field – and the conclusion that the mass

flow envelops these characteristic surfaces. However, as far

no graphical illustration of this fact including recirculation

patterns in the core of the magnetic obstacle had been pre-

sented.

Now, such an illustration is shown in Fig. 5 where one can

easily make sure that there are similar mass flow streamlines

(plot a) and electric potential contour lines (plot c) as well

as electric current pathes (plot b) and pressure contour lines
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(plot d).

CONCLUSIONS.

For the first time, 3D numerical simulations are per-

formed for a liquid metal flow subject to a strong external

heterogenous magnetic field. The simulations shed light on

the process of the formation of the core of the magnetic ob-

stacle when the interaction parameter N is large. The core

is surrounded by deformed magnetic vortices located in the

shear layer. Inside the core there is no mass and electric

transfer, i.e. at high N the magnetic obstacle is analogous

to a solid hydrodynamical obstacle.
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