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ABSTRACT

Spontaneous spin-up of two-dimensional MHD turbu-

lence is investigated in different wall-bounded geometries by

means of direct numerical simulation. It is shown that in

square and elliptic geometries the flow has a strong tendency

to generate angular momentum from initial conditions free

from angular momentum. In circular geometry this tendency

is absent. It is shown that the generation of angular momen-

tum in non-axisymmetric geometries can be enhanced by

increasing the magnetic pressure. The effect is stronger at

higher Reynolds numbers. The generation of angular fields,

(or magnetic angular momentum), previously observed at

low Reynolds numbers, is weak but persistent in both the

circular and elliptic geometries.

INTRODUCTION

In fusion plasmas, spontaneous large-scale poloidal rota-

tion is beneficial for the confinement as it suppresses tur-

bulence and radially extended structures, which are largely

responsible for anomalous transport [2, 11]. This reduction

of turbulent activity plays a key role in the transition to an

improved confinement state (L-H transition) [5]. The ab-

sence of this transition would jeopardize the success of the

ITER project. The understanding of large scale poloidal ro-

tation is therefore primordial. It is generally admitted that

the poloidal rotation of tokamaks is due to the asymmetry

of the charge distribution. However, in recent work [12] the

link was made between the L-H transition and the inverse

cascade of two-dimensional turbulence. A neutral fluid can

therefore also give rise to poloidal large-scale rotation.

The phenomenon of spontaneous generation of large-

scale rotation-cells in two-dimensional fluid turbulence was

discovered by Clercx et al. [4]. The importance of the non-

axisymmetry of the geometry was recently demonstrated by

Keetels et al. [6], and an interpretation in terms of sta-

tistical mechanics was obtained by Taylor et al. [13]. All

these studies were performed for non–conducting fluids, us-

ing either the Navier–Stokes, or Euler equations. In MHD

turbulence the question was investigated for the first time

only very recently [3], where it was shown that spin-up in

MHD turbulence is also present and that it can be enhanced

by increasing the magnetic fluctuations. These observations

were however done at low Reynolds numbers in square and

circular geometries. In the present work we will confirm

these results at higher Reynolds numbers in three different

geometries, a square, a circle and an ellipse. It is shown that

the tendency to generate angular momentum is stronger at

higher Reynolds number. The tendency to generate angular

fields is still present at these Reynolds numbers, but not in

the square geometry.

METHOD

We present results of pseudo-spectral simulations of two-

dimensional MHD turbulence in bounded domains. An ef-

ficient method to compute these flows is the penalization

method, which was introduced by Angot et al. [1], and ap-

plied to fluid turbulence by Schneider [9, 10]. This method

was extended to MHD turbulence in a recent work [8]. Using

this method, efficient pseudo-spectral solvers can be used to

compute flows which contain solid walls and obstacles.

The simulations are performed in circular, square and el-

liptic domains. No-slip boundary conditions are imposed for

the velocity field and the normal component of the magnetic

field vanishes at the wall, while the tangential component

freely evolves. The governing equations are

∂u

∂t
+ u · ∇u = −∇p+ j × B + ν∇2u−

1

ε
χ(u− u0) (1)

∂B

∂t
= ∇× (u× B) + η∇2B −

1

ε
χ(B − B0) (2)

∇ · u = 0 (3)

∇ · B = 0 (4)

Here ν and η are respectively the kinematic viscosity and the

magnetic diffusivity. The vorticity is defined by ωez = ∇×u

and jez = ∇× B denotes the current density. Furthermore

we define the vector potential a = aez as B = ∇ × a and

the stream function ψ as u = ∇⊥ψ = (−∂ψ/∂y, ∂ψ/∂x).

The last term in the evolution equations for u and B, is the

penalization term which allows to impose the solid boundary

conditions.

The quantities u0 and B0 correspond to the values im-

posed in the solid part of the numerical domain. Here we
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choose u0 = 0 and B0 = B
‖

(where B
‖

is the tangential

component of B at the wall), corresponding to vanishing

velocity and no penetration of magnetic field into the solid

domain which is hence considered as a perfect conductor, see

also [7]. In other terms there is no magnetic flux across the

wall. The mask function χ is equal to 0 inside the fluid do-

main (where the penalization terms thereby dissappear) and

equal to 1 inside the part of the domain which is considered

to be a solid. The physical idea is to model the solid part as

a porous medium whose permeability ε tends to zero [1, 9].

For ε→ 0, where the obstacle is present, the velocity u tends

to u0 and the magnetic field B tends to B0. The nature of

the boundary condition for the velocity is thus no-slip at the

wall.

The initial conditions consist of correlated noise, with a

prescribed energy spectrum, peaked at the low wavenum-

bers. The initial fields contain zero or little angular momen-

tum and angular field, defined respectively as

Lu =

Z

Ω

ez · (r × u) dA,

LB =

Z

Ω

ez · (r × B) dA. (5)

in which Ω is the flow domain and r is the position vector

with respect to the center of the domain. Simulations are

performed at a resolution of 5122 grid-points. The magnetic

Prandtl number is unity and the initial Reynolds number,

based on the root mean square velocity, and domain-size is

of the order of 104. Ten simulations were carried out in

each geometry and we present the results of the simulations

in which the generation of angular momentum is maximal.

The time is normalized by D/
p

2Eu(t = 0), D being the

typical lengthscale of the fluid domain.

RESULTS

Visualizations

Visualizations of the vorticity, the stream-function the

current density and the vector-potential are displayed in Fig-

ure 1. We will first focus on the behavior in the square

geometry. It is observed that both in the velocity-field and

the magnetic field exhibit a tendency to generate large-scale

structures. The current-density shows that the magnetic

field-lines of the two main flow-structures are in the op-

posite direction. This is even clearer in the plot of the

vector potential. The magnetic angular momentum LB is

therefore small, since the contributions of both structures

cancel each other out. For the velocity field this is not the

case. Significant symmetry-breaking is observed, especially

in the stream-function. Both vortices are turning in the

same sense, with a strong shearing region in between them.

Non-zero angular momentum results. Similar observations

can be made for the elliptic geometry. In the circular geom-

etry it is more difficult to visually evaluate the generation of

angular momentum.

Quantifying the generation of kinetic and magnetic angular

momentum

To quantify the extend to which a large-scale swirling

structure dominates the flow, we plot in Figure 2 the angu-

lar momentum in the three geometries. It is observed that

strong spin-up takes place in the square and in the ellipse.

The generation of the angular momentum is spontaneous,

after a short time interval t ≈ 3 and one observes that the

amplitude is close to 0.4 in the square and 0.3 in the ellipse.

This implies that, in the square container, the fluid reaches

an angular momentum which corresponds to approximately

40% of the angular momentum which would possess a fluid

in solid-body rotation containing the same energy at t = 0.

There is practically no spin-up in the circular container.

In Figure 2, bottom, the magnetic angular momentum

is evaluated in all geometries. Surprisingly, in the square in

which the generation of kinetic angular momentum was the

strongest, LB remains close to zero. In the other two geome-

tries, an amount of LB is created, however, this magnetic

spin-up takes place on a time-scale which is larger than for

its kinetic counterpart. Furthermore it can be observed that

once LB is created it remains almost constant over time.

Discussion

In [3] we derived the equation for Lu in the case of MHD

turbulence. It reads

dLu

dt
= ν

I

∂Ω

ω(r · n)ds+

I

∂Ω

p�r · ds (6)

with ν the kinematic viscosity, ω the vorticity, n the unit-

vector perpendicular to the wall, p� = p+B2/2 is the sum of

the hydrodynamic and magnetic pressure. It was discovered

by Clercx et al. [4] that spontaneous generation of angu-

lar momentum in hydrodynamic turbulence is observed in

square domains, whereas it is absent in a circular domain.

Subsequently, it was explained to be an effect due to the

pressure [6], the last term in equation (6). Indeed, this term

vanishes in a circular domain. In MHD, the presence of

the magnetic pressure allows to vary the importance of the

pressure term, while keeping the other parameters constant,

by changing the value of the magnetic fluctuations. This

is illustrated in Figure 3. The ratio EB/Eu is varied, with

EB the mean-square of the magnetic fluctuations and Eu

the mean-square of the velocity fluctuations. It is observed

that the tendency to spin-up is significantly increased in the

square geometry. It is thus shown that both geometry and

magnetic pressure can play a role in the generation of zonal

flows.

In [3], the tendency to generate angular fields was also

investigated by computing the value of LB . It was observed

that angular fields were observed, even in the circular geom-

etry. In Figure 2 bottom, we show that at higher Reynolds

numbers the generation of this ’magnetic angular momen-

tum’ is weak but persistent. In the square geometry it is

absent. Writing the equation for LB, we find

dLB

dt
= η

I

∂Ω

j(r · n)ds − 2ηI . (7)

where I denotes the net current through the domain, defined

by I =
R
Ω
jdA. The pressure plays thus no direct role and

only the net current or resistive magnetic stress can generate

angular fields. It is surprising that in the circular geometry

the generation of angular fields is present, whereas it is ab-

sent in the square geometry. We suspect that it is related

to the presence of a mean current through the circular do-

main. However, for the moment the reason for this is not

understood and thus requires further investigations.

CONCLUSIONS

Pseudo-spectral simulations of two-dimensional MHD

turbulence in a bounded domain were performed. It was

shown that spin-up takes place in non-axi-symmetric geome-

tries (squares, ellipses). This phenomenon, observed in [3] at
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Figure 1: Visualizations of (from top to bottom) the vorticity ω, the stream–function ψ, the current density j and the vector

potential a for the square, circular and elliptic geometries. The three columns correspond to (from left to right) to the time

instants t� = 3, 2, 2.7 for which Lu (Fig. 2) is maximal. The time is normalized by the initial turn-over time.

low Reynolds number, persists at higher Reynolds numbers

(larger by about a factor 6) and becomes more pronounced.

The generation of the magnetic equivalent of the angular mo-

mentum becomes weaker at higher Reynolds numbers. The

first effect, the kinetic spin-up can be enhanced by increas-

ing the magnetic fluctuations. It is therefore clearly related

to the pressure term p∗. The fact that the magnetic spin-up

is persistent at these Reynolds numbers might be related to

the presence of a net current through the domain.
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Figure 2: Time-dependence of the angular momentum Lu

(top) and angular field LB (bottom) in the square, circu-

lar and elliptic geometry, normalized by Lu(0) and LB(0),

respectively.
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Figure 3: The influence of the magnetic pressure on the spin-

up in the square container is illustrated by changing the ratio

EB/Eu, while keeping Eu fixed.

[3] W.J.T. Bos, S. Neffaa, and K. Schneider. Rapid gen-

eration of angular momentum in bounded magnetized

plasma. Phys. Rev. Lett., 101:235003, 2008.

[4] H. J. H. Clercx, S.R. Maassen, and G.J.F.van Heijst.

Spontaneous spin-up during the decay of 2d turbulence

in a square container with rigid boundaries. Phys. Rev.

Lett., 80:5129, 1998.

[5] F. Wagner et al. Regime of improved confinement and

high beta in neutral-beam-heated divertor discharges of

the ASDEX tokamak. Phys. Rev. Lett., 49:1408, 1982.

[6] G.H. Keetels, H.J.H. Clercx, and G.J.F. van Heijst.

Spontaneous angular momentum generation of 2d flows

in an elliptical geometry. Phys. Rev. E, 78:036301,

2008.

[7] P.D. Mininni and D.C. Montgomery. Magnetohydro-

dynamic activity inside a sphere. Physics of Fluids,

18:116602, 2006.

[8] S. Neffaa, W.J.T. Bos, and K. Schneider. The decay

of magnetohydrodynamic turbulence in a confined do-

main. Phys. Plasmas, 15:092304, 2008.

[9] K. Schneider. Numerical simulation of the transient

flow behaviour in chemical reactors using a penalization

method. Comput. Fluids, 34:1223, 2005.

[10] K. Schneider and M. Farge. Decaying two-dimensional

turbulence in a circular container. Phys. Rev. Lett.,

95:244502, 2005.

[11] X. Shan and D.C. Montgomery. Magnetohydrody-

namic stabilization through rotation. Phys. Rev. Lett.,

73:1624, 1994.

[12] M. G. Shats, H. Xia, and H. Punzmann. Spectral con-

densation of turbulence in plasmas and fluids and its

role in low-to-high phase transitions in toroidal plasma.

Phys. Rev. E, 71:046409, 2005.

[13] J.B. Taylor, M. Borchardt, and P. Helander. Interact-

ing vortices and spin-up in two-dimensional turbulence.

Phys. Rev. Lett., 102:124505, 2009.

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

702

미정댁
메인/컨텐츠




