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ABSTRACT 
The generation of large-scale magnetic field due to 

small-scale motion of a conducting fluid, which is called the 
dynamo action, is important in understanding magnetic 
fields in astro/geophysical objects and in controlled fusion 
devices. A large eddy simulation (LES) of 
magnetohydrodynamic (MHD) turbulent channel flow is 
carried out and turbulent statistics are obtained to 
investigate the dynamo effect. It is shown that a streamwise 
mean magnetic field is generated due to the effect of the 
turbulent electromotive force. It is suggested that the cross-
helicity dynamo effect contributes to the turbulent 
electromotive force; that is, the electromotive force parallel 
to the mean vorticity is generated due to the turbulent cross 
helicity. The dynamo effect is also investigated using the 
transport equations for the turbulent kinetic and magnetic 
energies. 

 
 

INTRODUCTION 
The behavior of the magnetic field in the earth and the 

sun and in the plasma controlled fusion devices is closely 
related to the motion of a conducting fluid such as the 
molten iron and the plasma gas. In the MHD flows at high 
magnetic Reynolds numbers turbulent motions enhance the 
diffusion effect of the magnetic field like the scalar 
transport in the non-MHD turbulent flows. However, the 
turbulent diffusion effect cannot account for the large-scale 
magnetic field actually observed in astro/geophysical 
phenomena and in engineering devices. It is expected some 
dynamo effect exists which drives and sustains the large-
scale magnetic field against the diffusion effect. The �  
dynamo is the most famous dynamo mechanism (Krause 
and Rädler, 1980). Helical fluid motions drive the 
electromotive force in the direction of the mean magnetic 
field. On the other hand, the cross-helicity dynamo was also 
proposed and investigated. The electromotive force is 
driven in the direction of the mean vorticity when the cross-
helicity, the correlation between the velocity and the 
magnetic field, has non-zero value (Yoshizawa, 1998). 

In the induction equation for the mean magnetic field, 
the turbulent electromotive force appears as an unknown 

term. In order to close the magnetic field equation, the term 
needs to be modeled using the mean field. The mean field 
dynamo theory has been studied theoretically and 
numerically; for example the dynamo mechanism for the 
solar magnetic field is investigated in detail (Brandenburg 
and Subramanian, 2005). On the other hand, a turbulence 
theory called the two-scale direct-interaction originally 
developed for non-MHD flows was extended and applied to 
the MHD turbulence (Yoshizawa, 1998). Using this theory, 
several turbulence models were proposed to investigate the 
magnetic field in astrophysical objects and in plasma 
controlled fusion devices (Yoshizawa et al., 2003; Yokoi et 
al., 2008). However, these models are not fully assessed 
using experiment and numerical simulations in contrast to 
the turbulence models for the non-MHD flow. The direct 
numerical simulation (DNS) and LES are useful tools for 
validating the models. Several three-dimensional 
simulations for solar dynamo have been carried out. These 
simulations involve fairly complex physical phenomena 
such as the thermal convection, the fluid compressibility, 
and the gravity effect. More simple simulations must be 
useful as a first step. 

In this work, we carry out an LES of MHD turbulent 
channel flow. Mean fields and turbulent statistics are 
obtained to examine the dynamo mechanism and to assess 
the MHD turbulence model. 

 
 

MODEL EQUATIONS AND NUMERICAL METHOD 
In this paper we adopt Alfvén velocity units such 

as b / ��0 � b . The equations for the grid scale (GS) 
velocity and magnetic fields are given by 

 �u
�t

= ���(u �u � b �b)����� ��(p +
1

2
b2 ) + ��2u  (1) 

 ���u = 0  (2) 

 �b
�t

= �� � e,���e = �u � b � eM + �M j,��� j = � � b,  (3) 

 ��b = 0  (4) 
where �  is the viscosity and �M  is the magnetic diffusivity. 
The subgrid scale (SGS) stress �  and the SGS 
electromotive force eM  are defined as 
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Figure 1. Computational domain of channel flow. 
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Figure 2. Time history of flow rate. 
 
 

 � �= uu � bb � (uu � bb)  (5) 

 eM = u � b � u � b  (6) 
As the SGS model we adopt the following model 

 �ij =
1

3
�kk� ij � �SGS sij ,��� sij =

�ui

�x j

+
�uj

�xi

 (7) 

 eM = ��SGS j  (8) 

 �SGS = C��
2 ( 1

2 C� sij
2 + C� j� i

2 )1/2  (9) 

 ��SGS = C��
2 ( 1

2 C� sij
2 + C� j� i

2 )1/2  (10) 

where C� = (5 / 7)C�  and C� = 0.046 . This SGS model was 
derived by extending the Smagorinsky model for non-MHD 
turbulence to MHD (Hamba, 1989). It was assumed that the 
SGS viscosity and diffusivity can be expressed in terms of 
the SGS energy dissipation and the filter width �  and that 
the production and dissipation terms are balanced to each 
other in the equation for the MHD SGS energy. The values 
of model constants are determined considering the 
theoretical value of the turbulent magnetic Prandtl number 
(Yoshizawa, 1998) and the correspondence to the 
Smagorinsky model in the non-MHD limit. 

Using the above equations we carry out an LES of 
MHD channel flow driven by a constant pressure 
gradient �dp0 / dx . The computational domain is 
Lx � Ly � Lz = 16� � 2 � (4 / 3)�  and the number of grid 
points is Nx � Ny � Nz = 256 � 64 � 64  where x, y, and z 
denote the streamwise, wall-normal, and spanwise 
directions, respectively as shown in Fig. 1. The length scale  
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Figure 3. Time history of magnetic flux 
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Figure 4. Time history of turbulent kinetic and magnetic 
energies. 

 
 
is normalized by the channel half width Ly / 2  and the 
velocity and magnetic fields are normalized by the friction 
velocity u� = (| dp0 / dx | Ly / 2)1/2 . The Reynolds and 
magnetic Reynolds numbers based on the friction velocity 
are set to Re� = 180  and Rm� = 180 , respectively. The 
periodic boundary conditions are imposed in the x and z 
directions. The non-slip condition is adopted at the walls at 
y = ±1  for the velocity; the wall is treated as an insulator 
for the magnetic field. A statistical steady velocity field of 
the non-MHD turbulent channel flow is used as the initial 
condition for the velocity at t = 0 . A random seed field with 
zero mean is used as the initial condition for the magnetic 
field. Unlike the Hartman flow, the wall-normal component 
of the mean magnetic field By  is set to zero. This is 
because we want to realize the turbulent field without the 
mean-field electromotive force (U � B)z , which drives the 
mean field Bx  in a trivial manner. 

 
 

TEMPORAL EVOLUTION 
First we examine the temporal evolution of the turbulent 

field. Figures 2 and 3 show the time history of volume 
average of the velocity and magnetic fields given by 
(1 / Ly ) �ux �xz dy�  and (1 / Ly ) �bx �xz dy� , respectively, 
where ���xz  denotes the x-z plane average. The time is  
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Figure 5. Mean velocity. 
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Figure 6. Mean magnetic field. 
 
 
normalized by (Ly / 2) / u� . The mean velocity increases to 
about 22 at t=100 and a statistically steady state is kept until 
t=2600. On the other hand, the mean magnetic field shows 
negative values; it fluctuates in time. After t=2600 the 
turbulent fluctuations decrease to zero and the mean 
velocity shows a laminar profile.  

Figure 4 shows the time history of volume average of 
the turbulent kinetic and magnetic energies given by 
(1 / Ly ) � ��ui

2 �xz dy�  and (1 / Ly ) � ��bi
2 �xz dy� . The turbulent 

energies fluctuate in time and are also sustained until 
t=2600. Therefore, it is shown that for a long time period 
until t=2600 an MHD turbulent field with a negative mean 
magnetic field is sustained.  

 
 

TURBULENCE STATISTICS 
In this section the statistical quantities are obtained by 

averaging over the x-z plane and in time from t=1200 to 
2400. This average is denoted by ��� ; the physical quantity 
is decomposed as f = �f�+ ��f . Some mean values are also 
denoted by upper-case letters such as Ui  and Bi . 

Figure 5 shows the mean velocity profiles. The solid 
line is the present MHD result and the dashed line is the 
result of DNS of non-MHD channel flow of Moser et al. 
(1999). The mean velocity in the MHD case is fairly greater 
than that of the non-MHD case. Figure 6 shows the profile 
of the mean magnetic field. Although its magnitude is about  

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

st
re

am
w

is
e 

in
te

ns
ity

-1.0 -0.5 0.0 0.5 1.0

y

 ux"
 bx"
 ux" (non MHD)

 
 

Figure 7. Streamwise component of turbulent intensity. 
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Figure 8. Wall-normal component of turbulent intensity. 
 
 
10% of the mean velocity, it clearly shows a non-zero 
profile. It takes a peak value at the channel center. This 
profile cannot be explained in a simple manner because the 
mean-field electromotive force vanishes as mentioned 
before. Other runs with different initial random field show 
positive mean magnetic field (not shown here). 

Figure 7 shows the streamwise component of the 
turbulent intensities � ��ux

2 �1/2  and � ��bx
2 �1/2 . The velocity 

fluctuation in the MHD case is fairly greater than that in the 
non-MHD case. The magnetic-field fluctuation is slightly 
less than the velocity fluctuation. Figure 8 shows the wall-
normal component of the turbulent intensities � ��uy

2 �1/2  and 
� ��by

2 �1/2 . The wall-normal component of the velocity 
fluctuation in the MHD case is less than that in the non-
MHD case in contrast to the streamwise component. 
Therefore, the anisotropy of the turbulent intensity in the 
MHD case is greater than in the non-MHD case. 

The mean velocity is driven by a constant pressure 
gradient. To understand the reason for the increase in the 
flow rate, we examine the balance of the mean momentum 
given by 

 � ��ux ��uy 	 + ��xy 	� �
��ux 	
�y

= y  (11) 

Figure 9 shows four terms appearing in (11), the GS, SGS, 
viscous terms and the total stress; the GS stress term in non-
MHD case is also plotted. Since a statistically steady state is  
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Figure 9. Balance of shear stress. 
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Figure 10. Balance of electromotive force. 
 
 
achieved, the total value is nearly equal to y. The magnitude 
of the GS stress � ��ux ��uy �  is smaller than that in the non-
MHD case. This is because the wall-normal velocity 
fluctuation � ��uy

2 �  is smaller in the MHD case as shown in 
Fig. 8. The small value of the wall-normal fluctuation is 
mainly due to the decrease in the redistribution effect by the 
pressure–strain term in the turbulent kinetic energy equation. 
This will be examined later. 

On the other hand, the mechanism of the sustainment of 
the magnetic field shown in Fig. 6 is not trivial. The mean 
induction equation and the balance of the electromotive 
force are given by 

 
�Bx

�t
= �

��ez �

�y
 (12) 

 ��ez � = � ��u � ��b �z + �eMz �� �M Jz  (13) 
where J = �� B . Since the initial condition with By = 0  
was set, there is no mean electromotive force (U � B)z . 
Figure 10 shows four terms, the GS, SGS, molecular 
diffusion terms and the total electric field given by (13). 
Since a very long time average is taken, the total electric 
field �ez �  is nearly zero. At �0.8 < y < 0.8  the SGS term 
�eMz �  and the molecular diffusion term ��M Jz  show 
positive gradient. This gradient means the diffusion effect 
because it leads to a positive value of �Bx / �t  in (12) and 
to a decrease of the magnitude of Bx . On the other hand, the 
GS term � ��u � ��b �z  shows negative gradient. This means a  
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Figure 11. Mean vorticity. 
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Figure 12. Turbulent cross helicity. 
 
 
dynamo effect that drives the mean magnetic field against 
the diffusion effect. 

The turbulent electromotive force can be modeled as 
 
 ��u � ��b �z = �Bz ��Jz + ��z  (14) 

where � = � � U , �  is the alpha coefficient related to the 
helicity � ��u � ��� � , �  is the turbulent diffusivity, and �  is 
the cross-helicity dynamo coefficient (Yoshizawa, 1998). 
Since Bz  and � ��u � ��� �  are small in the present flow, the 
alpha dynamo seems irrelevant. The �  term simply 
enhances the diffusion. The mean vorticity �z = ��Ux / �y  
shows negative (positive) value at �1 < y < 0  ( 0 < y < 1 ) in 
Fig. 11. The cross helicity � ��u � ��b �  shows negative value at 
�0.7 < y < 0.7  in Fig. 12. Therefore, the cross-helicity 
dynamo term shows negative gradient and can account for 
the GS electromotive force shown in Fig. 10. This result 
suggests that the cross helicity dynamo ��z  is important in 
the present MHD turbulence. 

 
 

ENERGY TRANSFER 
In order to better understand the dynamo effect, we 

examine the transport equations for the turbulent kinetic and 
magnetic energies. The equations for the three components 
of the turbulent kinetic energy are given by 
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Figure 13. Transport equation for streamwise component of 
turbulent kinetic energy. 
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Figure 14. Transport equation for wall-normal component 
of turbulent kinetic energy. 

 
 

 

 

�
�t
� ��ux

2 � = �2� ��ux ��uyy �
�Ux

�y
+ 2� ��ux ��by �

�Bx

�y

����������������+2 ��pM

� ��ux

�x
� �x + 2 ��ux ��bk

� ��bx

�xk

+	
 (15) 

 
 

�
�t
� ��uy

2 � = 2 ��pM

� ��uy

�y
� �y + 2 ��uy ��bk

� ��by

�xk

+	  (16) 

 
 

�
�t
� ��uz

2 � = 2 ��pM

� ��uz

�z
� �z + 2 ��uz ��bk

� ��bz

�xk

+	  (17) 

where diffusion terms are omitted. The right-hand side of 
(15) consists of the two production terms, the pressure-
strain term, the dissipation term, and the Lorentz term. The 
production term involving the mean velocity gradient 
represents the energy transfer between � ��ux

2 �  and Ux
2  

whereas the production term involving the mean magnetic-
field gradient represents the energy transfer between � ��ux

2 �  
and Bx

2 . The Lorentz term corresponds to the energy transfer 
between � ��ux

2 �  and � ��bx
2 � . The production terms are 

involved only in (15) whereas the Lorentz terms appear also 
in (16) and (17). 

Figure 13 shows the terms in the � ��ux
2 �  equation. Like 

those in the non-MHD case, the mean-shear production and 
dissipation terms are dominant as the energy gain and loss, 
respectively. The pressure-strain term shows a small  
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Figure 15. Transport equation for streamwise component of 
turbulent magnetic energy. 
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Figure 16. Transport equation for wall-normal component 
of turbulent magnetic energy. 

 
 
negative value, which represents the energy transfer to the 
other components of the turbulent kinetic energy. Its 
magnitude relative to the dissipation is small compared to 
the non-MHD case; this small value accounts for the strong 
anisotropy of the turbulent kinetic energy � ��ui

2 � . In the 
MHD case, the production term involving the mean 
magnetic-field gradient and the Lorentz term newly appear. 
We should note that the magnetic production term shows a 
negative value. This means the energy transfer from � ��ux

2 �  
to Bx

2  and corresponds to the dynamo effect. 
Figure 14 shows the terms in the � ��uy

2 �  equation. Since 
there is no production term, the pressure-strain term acts as 
the energy gain. Both the dissipation and Lorentz terms 
show negative value; the latter represents the energy 
transfer from � ��uy

2 �  to � ��by
2 � . 

The equations for the three components of the turbulent 
magnetic energy is given by 

 

 

�
�t
� ��bx

2 � = 2� ��bx ��by �
�Ux

�y
� 2� ��bx ��uyy �

�Bx

�y

�������������������Mx + 2 ��bx ��bk

� ��ux

�xk

+	
 (18) 

 
 

�
�t
� ��by

2 � = ��My + 2 ��by ��bk

� ��uy

�xk

+	  (19) 
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�
�t
� ��bz

2 � = ��Mz + 2 ��bz ��bk

� ��uz

�xk

+	  (20) 

where diffusion terms are omitted. The last terms on the 
right-hand sides are the Lorentz term representing the 
energy transfer from the kinetic to magnetic energies. In 
these equations there is no pressure-strain term. 

Figure 15 shows the terms in the � ��bx
2 �  equation. Like 

the � ��ux
2 �  equation the mean-shear production and 

dissipation terms are dominant. In this case, the production 
term involving the mean magnetic-field gradient shows a 
positive value, which represents the energy transfer from 
Bx

2  to � ��bx
2 � . 

Figure 16 shows the terms in the � ��by
2 �  equation. 

Instead of the pressure-strain term, the Lorentz term acts as 
the energy gain. It is shown that the � ��by

2 �  component is 
sustained by the energy transfer from the kinetic 
energy � ��uy

2 � . 
 
 

CONCLUSIONS 
An LES of MHD turbulent channel flow was carried out 

using a Smagorinsky-type SGS model. It was shown that 
the mean magnetic field is driven by the turbulent 
electromotive force. The cross helicity dynamo is suggested 
to be important in the balance of the electromotive force. 
The transport equations for the turbulent kinetic and 
magnetic energies were also examined. The energy transfer 
from the turbulent kinetic energy to the mean magnetic field 
is confirmed. We expect that this simulation is useful for 
better understanding the dynamo mechanism in MHD 
turbulence. 
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