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ABSTRACT 
Flow structures due to static and oscillating dimple in a 

channel are studied by direct numerical simulation. 
Coordinate transform are employed to account for the time-
dependent complex wall deformation. The governing 
equations are solved in the computational space by Fourier-
Chebyshev spectral method and third-order time splitting 
method. Three Reynolds numbers, i.e. Re=500, 1000, 1900, 
and two oscillating frequencies of f=0.5 and 2 are 
considered. With the increase of the Re, vortical structures 
can be generated by the static dimple. At Re=500, periodic 
shedding of vortices can be observed at both frequency. At 
Re=1900, no significant interaction between moving dimple 
and outside turbulence can be found at f=0.5. By increasing 
the frequency of dimple oscillation to f=2, the influence of 
the moving dimple on outside turbulent flow can be 
observed.

INTRODUCTION 
Flow over dimpled surfaces has drawn more and more 

attentions in both heat transfer and flow control research 
field in recent years. Dimples have the advantages of 
substantial heat transfer augmentation with low drag penalty 
(Shchukin, 1998).  They can act within a continuous surface, 
generate more localised vorticity than pimples and are 
considered as an excellent candidate for flow control 
application (McKeon, 2004).  

Flow structures due to static spherical dimple 
depressions on a channel surface have been studied by 
Ligrani (2001) and Won (2005) by experimental flow 
visualization. In Ligrani (2001), the ratio of maximum 
dimple depth to dimple print diameter is fixed to 0.2, and 
three different channel heights are used so that the ratio of 
channel heights to dimple print diameter takes the value of 
0.25, 0.5 and 1.0, respectively. For all the three ratios, a 
primary vortex pair shedding from the central portion of 
each dimple was observed, and the nondimensional 
shedding frequencies of 2.2-3.0 were reported. In Won 
(2005), the influence of dimple depths on flow structures 
are investigated. The ratio of channel heights to dimple print 
diameter are fixed to 1, and the ratio of the maximum 
dimple depths to  dimple print diameter takes three values 
of 0.1, 0.2 and 0.3. Periodic vortex pair ejections from the 
central part of the dimple were observed for all the three 
different dimples. Bigger and stronger vortices are produced 
by deeper dimples. McKeon (2004) studied the vorticity 
generation by active dimples by numerical simulation and 
experimental visulization. In their simulation the influence 

of the dimples was simplified by imposing perturbation 
velocity conditions at the bottom wall, and the flow 
separation within the dimples can not been represented. 
Hence further investigations into the flow over dimpled 
surface are needed to get more quantitative knowledge 
about the influence of the dimple on the flow above, 
especially for active dimples. 

In present study, the flows in a plane channel with a 
static or oscillating dimple on the lower wall are studied by 
direct numerical simulation. If the maximum depth and print 
diameter of the dimple are represented respectively by H
and D , the dimple oscillating frequency is f , then the 
flow in the channel depends on H , D , f , ) , U  and & ,
in which )  is the channel half width, U  the bulk mean 
velocity and &  the kinetic viscosity of the fluid (for 
incompressible fluid, the density � is considered as a 
known constant). According to dimensional analysis, the 
flow is determined by the following four dimensionless 
parameters: the ratio of dimple print diameter to channel 
half width )�* /D D , the ratio of dimple depth to 
diameter 7 � /H D , Reynolds number ) &� /Re U  and 
Strouhal number � /St fD U . In present study, the 
dimples with fixed *D  and 7 are employed, and the main 
concern is focused on the influence of Re  and St  on the 
flow structures. 

NUMERICAL METHOD 
The flow of incompressible Newtonian fluid in a 

channel with dimpled walls is governed by Navier-Stokes 
equation and continuity equation: 
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In streamwise ( x  or 
1
x ) and spanwise ( z  or 

3
x ) directions, 

the flow is assumed periodic. In wall normal direction (y  or 

2
x ), the no-slip condition is used at the walls.  

Let the upper and lower walls are located at :� �1
u

y
and :� � �1

d
y , and : :� ( , , )
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x z t  and : :� ( , , )

d d
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represent the amount  of deformation at the corresponding 
walls, respectively. The computational coordinate system 
I
i
 and �  is defined so as to 
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computational space, the upper and lower walls are located 
at I �

2
1  and I � �

2
1 , and the no-slip conditions at the 

walls can be written as  
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By the above coordinate transform, the temporal and 
spatial derivatives can be represented by  
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The flow quantities in computational space are 
represented by the expansions of Fourier series and 
Chebyshev polynomials. Hence for spatial discretization of 
the governing equations, Fourier-Galerkin method is used in 
streamwise and spanwise directions, and Chebyshev-Tau 
method is adopted in wall-normal direction. The extra terms 
due to coordinate transform are iterated by a modified 
Newtonian iteration method. The third order time splitting 
method is employed for time advancement. For more details 
see Xu (1996).  

RESULTS 
In present study, a cosine-shaped dimple is imposed at 

the centre of the lower wall with �* 2D  and 7 � 0.2 . The 
dimple profile can be described by 
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where 2 2
0 0

( ) ( )r x x z z� � � � ,
0 0
( , )x z  is the centre of 

the dimple at the plane of channel floor, and ( )t�  is the 
function describing the temporal variation of the dimple. 
For, static dimple ( ) 1t �� , and for oscillating dimple, 

(� �( ) [1 sin(2 / )]/ 2t t T� . The size of the 
computational domain for static and oscillating dimple is 
( (� �2 2 2  and ( (� �4 2 2 , respectively,  in accordance 

with � �64 65 64  grids.  The computations are starting 
from the laminar plane Poiseuille flow and the flow rates 
are kept constants during the computation by adjusting the 
driving pressure gradient every time step according to the 
friction and pressure drag. 

Static Dimple 
The flow structures over static dimples are first studied 

at three different Reynolds numbers, � 500Re , 1000  and 
1900 . As an example, the velocity vectors at ( , )y z -plane at 
different streamwise locations are shown in Fig. 1. The 
plane at � 0x  refers to the plane passing the dimple centre, 
and positive and negative x  values refers to the 
downstream and upstream locations respectively.  

For � 500Re ,  on the plane just in front of the dimple 
at � �1.05x , the fluid flows towards the origin; at  

� �0.79x , the fluid flows into the dimple; at � �0.52x ,
the outside fluid continues the motion into the dimple, but 
the fluid inside the dimple starts to move upward from the 
bottom, and form an asymptotic stream surface at about the 
half depth of the dimple; further downstream, at � �0.26x ,
the upward flow from the dimple bottom becomes even 
stronger, and the stream surface rises up to about the top of 
the dimple. At  � 0x  on the plane passing through the 
dimple centre, the upward motion from dimple bottom is 
weaken, because part of the inrush fluid flow out of the 
dimple along the side walls. Further downstream, at 

� 0.26x ,  the outside fluid rushes into the dimple at the 
central part until the dimple bottom, and the outward flow 
from the dimple along the side wall becomes even stronger. 
At � 0.52x , the inrush motion becomes weaker, and the 
outward flow along the side wall is more stronger. Near the 
rear edge of the dimple, the fluid moves purely upward from 
the dimple bottom as are shown by the vectors on the planes 
at � 0.79x  and � 1.05x .

For � 1000Re , the whole scenario is similar to that at 
� 500Re , except that on the central plane, a pair of 

counter-rotating streawise vortices are formed near the side 
edges for � 1000Re . The main difference in flow 
structures at � 1900Re , from those at the other two low 
Reynolds numbers is the occurrence of the four counter-
rotating streamwise vortices in the  main flow. A relatively 
smaller pair of counter-rotating streamwise vortices is 
located just above the dimple with other two larger vortices 
on either side. The fluid flow in the dimple is similar to that 
at � 1000Re .

Oscillating Dimple 
The oscillating dimple is studied at � 500Re  and 

1900  with two different oscillating frequencies, � 0.5f

and 2 .
Fig. 2 shows a sequence of instantaneous three-

dimensional iso-surface of � 0.1Q covering one period for 
� 500Re  and � 0.5f , in which Q  is the second 

invariant of velocity gradient tensor and is used to identify 
visualize vortical structures. The periodic shedding of 
horse-shoe vortices can be easily observed. Under such 
condition, the horse-shoe vortices only are shed with the 
same period as the dimple excitation signal. The time series 
of the instantaneous streamwise velocity component just 
behind the dimple ( � � 0.05x D , � � 0.056y  ) are 
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recorded and shown in Fig. 3 (a). Fourier analysis is also 
performed on the signal to find the characteristic frequency, 
as is shown in Fig. 3 (b). From the analysis, it can be 
deduced that the dominant frequency is the same as the 
dimple oscillating frequency. With such low Reynolds 
number and low frequency, the flow remains totally laminar 
and the information of the flow field follow rigorously the 
dimple movement.

For � 500Re  and � 2f , the periodical shedding of 
vortical structures by oscillating dimples can also be found, 
but the vortices are more streamwise elongated rather than 
the horse-shoe like as is shown for example in Fig. 4 (a) the 
iso-surface of � 0.5Q at a selected phases in one oscillating 
period. The time evolution of the instantaneous velocity at 
the point just behind the dimple is shown on Fig. 4 (b), and 
its Fourier analysis is shown on Fig. 4 (c). Although the 
flow velocity remains laminar and the dominant frequency 
is still the oscillating frequency of the dimple at such a low 
Reynolds number, some fluctuations are introduced by the 
lower frequency.  

Fig. 5 shows the results for the case of � 1900Re  and  
� 0.5f . At such a Reynolds number, the flow becomes 

turbulent due to the disturbance generated by the oscillating 
dimple. Near the dimple the flow can be strongly affected 
by the movement but effects of the dimple can be ignored 
when the distance is increased, as is shown by the iso-
surface of � 6Q  in Fig. 5 (a). The Fourier analysis shows 
that no dominant frequency can be identified (see Fig. 5 (c)) 
in this case. This phenomenon might attribute to the low 
frequency of dimple oscillation compared with the time 
scale of the turbulent flow. In one oscillating period the 
turbulence can be well adjusted and show no relevance with 
the motion of the dimple. This hypothesis will be further 
checked. 

The results for the increased frequency � 2f  at 
� 1900Re  are shown in Fig. 6. In this case, although the 

flow is turbulent, the vortices shedding from the dimple 
centre can be observed (Fig. 6 (a)). The velocity just behind 
the dimple shows a very good periodic behaviour. The 
spectral analysis of the velocity shows two dominant 
frequencies of 0.5 and 2 respectively (see Fig. 6 (c)). This 
new feature raises a lot of questions on the relationship 
between Reynolds number and the oscillation frequency, 
more numerical experiments are being carried out to explore 
this phenomenon. 

CONCLUSION 
The Reynolds number effects on flow structures over 

static and oscillating dimples in channel flow at Re=500, 
1000 and 1900 have been studied by direct numerical 
simulation. For static dimple, the velocity vectors on 
spanwise-normal planes at different streamwise locations 
show that the fluid flows into the dimple near the leading 
edge and there are fluids flowing outward before the dimple 
centre, which is in agreement with the experimental 
observations by Ligrani (2001). With the increase of the 
Reynolds number, streamwise vortices can be generated 
inside the dimple and in the main flow. For oscillating 
dimple, two frequencies are considered, i.e. f=0.5 and 2. At 

Re=500, periodic vortex shedding by the moving dimple 
can be observed at both frequencies. The flow reacts to the 
motion of the dimple at the same frequency as the dimple 
oscillating frequency. At Re=1900, the flow is triggered to 
turbulent by the dimple in both cases. At low frequency, 
f=0.5, no obvious interaction between dimple and outside 
turbulence can be observed. Whereas, increase the 
frequency to f=2, the influence of dimple motion to outside 
flow is apparent. Besides the frequency that is the same as 
the dimple oscillating frequency, f=0.5 can also be observed 
to play a non-negligible role in the Fourier analysis of the 
velocity signals. Further analysis to give a possible 
explanation for this phenomenon is still under going. 
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Fig. 1 Velocity vectors on (y,z)-plane at different streamwise locations. 

From top to bottom: x=-1.05, -0.79, -0.52, -0.26, 0, 0.26, 0.52, 0.79, 1.05. 
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Fig. 2 Iso-surface of Q=0.1 at different time in an oscillating period (Re=500, f=0.5).  

(a) (b)

Fig. 3: (a) Time series and (b) Fourier analysis of velocity at a point just behind the dimple (Re=500, f=0.5). 
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(a) (b) (c) 
Fig. 4: (a) Iso-surface of Q=0.5, (b) time series and (c) Fourier analysis of velocity at a point just behind the dimple 

(Re=500, f=2). 

(a) (b) (c) 
Fig. 5: (a) Iso-surface of Q=6, (b) time series and (c) Fourier analysis of velocity at a point just behind the dimple 

 (Re=1900, f=0.5). 
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Fig. 6: (a) Iso-surface of Q=6, (b) time series and (c) Fourier analysis of velocity at a point just behind the dimple 

 (Re=1900, f=2). 
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