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ABSTRACT

We build on the work of Davidson et al. (2006) and

propose an elementary model for the log-law region of a

boundary-layer. The model contains only one free param-

eter (which we set equal to unity) and assumes very little

about the shape of the boundary-layer eddies. The physical

content of the model is simple: we assume that the two-point

statistics of the streamwise velocity fluctuations know about

the presence of the wall only to the extent that, over a range

of eddy sizes, it imposes a kinetic energy scale proportional

to the square of the shear velocity. Classic Kolmogorov phe-

nomenology is assumed for the small scales. The model is

an excellent fit to experimental data for the k−1 law of the

one-dimensional, longitudinal spectrum, Φuu (k), and also to

Φuu (k) in the inertial range. In addition, the model predicts

the cross-stream variation of the variance of the streamwise

velocity fluctuations,
〈

u2
x

〉

. Our prediction of the cross-

stream variation of
〈

u2
x

〉

differs from all other theories in

that it incorporates a ln (P/ε) correction, where P and ε are

the production and dissipation of energy respectively.

INTRODUCTION

The attached-eddy model of Townsend and Perry et al.

Consider a zero-pressure-gradient boundary layer where

x points in the streamwise direction and y is normal to the

wall. We focus on the log-law region of such a boundary

layer, where experiments suggest that there are eddies whose

size s lies in the range � < s < L and whose kinetic energy

per unit mass scales as K.E. ∼ u2
∗. (Here u∗ is the shear

velocity, � is to be determined and L is an outer scale which

we expect to be of the order of the boundary layer thickness,

δ.) In addition, there are smaller eddies, s < �, whose energy

distribution might be approximated by Kolmogorovs law,

K.E. ∼ ε2/3s2/3, where ε is the energy dissipation rate.

Noting that ε ∼ P ∼ u3
∗/y in the log layer, and that � must

satisfy u2
∗ ∼ ε2/3�2/3, the transition from one regime to the

other occurs at around � ∼ y.

Such a model of the log-layer was first proposed by

Townsend (1976) on the basis of the attached eddy hypoth-

esis, and later extended by Perry et al. (1986). Since then

there have been a multitude of attached eddy models which

often differ in detail from Townsend and Perry et al., but

not in spirit. However, the attached eddy hypothesis is only

one possible rationalisation of the experimental data, and

perhaps the more fundamental point is that we observe a

range of eddy sizes, y < s < L, whose kinetic energy scales

as u2
∗. Consequently, in this paper we build upon the ob-

served scaling, but hold back from interpreting the results

in terms of attached eddies.

There are two other differences between our model and

that of Perry et al. First, we develop the model in real space,

whereas the general scaling arguements of Perry et al. were

developed in Fourier space. It turns out that there is a cru-

cial difference at the sort of Reynolds numbers encoutered in

the laboratory. Second, Perry et al. had several free param-

eters in their model which were determined empirically. We

have only one free parameter which we put equal to unity.

The boundary-layer model of Davidson et al.

Suppose that Êx (s) is the real-space, streamwise kinetic

energy density of eddies of size s, defined by the requirement

that
∫ s2

s1
Êx (s) ds gives the contribution to 1

2

〈

u2
x

〉

from ed-

dies in the size range s1 < s < s2 (see Davidson, 2004, pp

419). Then we might express the observed energy distribu-

tion in the log-law region in the form,

sÊx (s) =
1

4
Bu2

∗ , � < s < L , (1)

sÊx (s) =
1

3
β̂ε2/3s2/3 , η̂ < s < � , (2)

where � ∼ y, B and β̂ are dimensionless coefficients of order

unity, and η̂ is the smallest eddy that makes a significant

contribution to the two-thirds law, i.e. η̂ is some multiple of

the Kolmogorov scale, η̂ = αη = α
(

ν3/ε
)1/4

.

Now continuity of Êx (s) demands � =
(

3B/4β̂
)3/2 u3

∗
ε

and so B, β̂, and � are not independent. Moreover, the

rate of turbulent energy production in the log-law region

of a boundary layer takes the form P = u3
∗/κy, κ being

Karman’s constant, and so we can rewrite our expressions

for � and η̂ as

� =
(

3Bκ2/3/4β̂
)3/2 P

ε
y . (3)

and

η̂ = ακ1/4
(

u∗y

ν

)−3/4 (P

ε

)1/4

y . (4)
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Note that Eq.(3) can be rewritten as � = λ (P/ε) y, where

λ ∼ 1. In a zero-pressure-gradient boundary layer we have

P ≈ ε , though the ratio P/ε does exhibit a slow variation

with y. Thus � depends upon the distance from the wall

partly through the linear term y , and partly because P/ε is

a weak function of y.

In Davidson et al. (2006) it is assumed that the ed-

dies within the boundary layer have a particularly sim-

ple shape; that is, blobs of vorticity with a Gaussian

profile. Moreover, it is supposed that, at any given

level y, these vortex blobs are distributed in a ran-

dom but locally isotropic manner. One may then cal-

culate the longitudinal correlation function, 〈uxu′
x〉 =

〈ux (x) ux (x + rêx)〉, and its one-dimensional spectral coun-

terpart, Φuu (k) = 1
π

∫∞
0

〈ux (x) ux (x + rêx)〉 cos (kr) dr,

for eddies of a given size s. These turn out to be

〈uxu′
x〉 (r) =

〈

u2
x

〉(s)
f(r) =

〈

u2
x

〉(s)
exp
(

−r2/s2
)

and

Φuu (k) = 1

2π1/2

〈

u2
x

〉(s)
s exp

[

− (ks)2 /4
]

, where the su-

perscript (s) indicates that we are considering eddies of size

s only. In the model of Davidson et al. (2006),
〈

u2
x

〉(s)

was taken to be a prescribed function of eddy size, with
1
2

〈

u2
x

〉(s)
= Ês (s) ds. Integration over s then yields

Φuu (k) =
1

π1/2

∫ ∞

0

sÊx (s) exp
[

− (ks)2 /4
]

. (5)

Combining Eq.(5) with Eq.(1) and (2) we find

kΦuu (k)

Bu2
∗

=
k

4π1/2

∫ �

η̂

(s/�)2/3 exp
[

− (ks)2 /4
]

ds

+
1

4
[erf (kL/2) − erf (k�/2)] . (6)

In the limit of η̂ → 0 , Eq.(6) constitute the simple model

of Davidson et al. (2006), where B and �, or equivalently B

and β̂, are considered as free parameters.

We note that the distance from the wall, y, enters

the analysis only through the spatial variation of ε(y), i.e.

ε(y) = [ε/P ]
[

u3
∗/κy
]

∼ u3
∗/κy, and so y always appears pre-

multiplied by P/ε, as in Eq.(3). Second, the only role of �,

and hence y, in Eq.(6) is to define the point at which Êx (s)

switches from sÊx (s) ∼ u2
∗ to the two-thirds law. The im-

plication is that the two-point statistics of the streamwise

component of the turbulence, knows about the presence of

the wall only to the extent that it enforces an sÊx (s) ∼ u2
∗

energy scaling over a range of scales, and that y dictates

the lower cut-off for this range. Third, the model does not

incorporate the non-universal components of inactive mo-

tion which are associated with the very large-scale eddies

in the outer part of the boundary layer. Fourth, the as-

sumption of randomly distributed Gaussian vortex blobs is

unlikely to be a realistic approximation in practice, but it

is important only to the extent that it fixes the form of

the longitudinal correlation function for eddies of size s as

〈uxu′
x〉 =
〈

u2
x

〉(s)
exp
(

−r2/s2
)

, from which Eq.(5) follows.

Finally, the model cannot predict the behaviour of the wall-

normal fluctuations as it does not build in the so-called

blocking effect of the wall, i.e. it does not satisfy u · dS

at y = 0.

Now in the ranges � << r << L and � << k−1 << L,

both the dissipation and outer scales cease to play any role

in Eq.(6), at least to leading order in kη and (kL)−1, and

this expression simplifies to

Φuu (k) =
Bu2

∗
4k

[

1 − 2

5π1/2
k� + O (k�)3

]

, (7)

Eq.(7) is the well-known k−1 law of Perry et al. (1986),

with a first-order corrections in k�. It was suggested by

Davidson et al. (2006) that B should be a universal constant,

independent of the nature of the outer flow.

In this paper we adapt the model of Davidson et al., in

such a way that: (i) there is only one free parameter (which

we put equal to unity); (ii) we can enforce a lower cut-off in

the two-thirds law; and (iii) the model is liberated from the

unlikely assumption that the turbulence can be treated as an

isotropic distribution of Gaussian vortex blobs. We shall see

that the refined model yields an excellent fit to the experi-

mental data for Φuu (k) in the ranges
√

3y < r << L and

ky > 0.1, respectively. The model also predicts the cross-

stream variation of the streamwise velocity variance,
〈

u2
x

〉

,

and this prediction suggests that the classical formulation of

Perry et al. (1986) needs to be modified to incorporate a

Bln (P/ε) correction.

A REFINED MODEL

The weakest feature of the model detailed above is the

assumption that locally, i.e. at a given level of y, the vor-

ticity field can be modeled as an isotropic distribution of

Gaussian vortex blobs. While this might be defended for the

K.E. ∼ ε2/3s2/3 part of the spectrum, it is clearly inappro-

priate for the large eddies which contribute to the K.E. ∼ u2
∗

law. However, as noted above, this assumption is used only

to the extent that it prescribes the form of the longitudinal

correlation function for eddies of size s:

〈

uxu′
x

〉

(r) =
〈

u2
x

〉(s)
exp
(

−r2/s2
)

. (8)

It is this, and only this, which leads to Eq.(5). Conse-

quently, it makes more sense to adopt Eq.(8) as the basis

for our model. In our refined analysis, therefore, we make

no assumption about the morphology of the vorticity field,

or about the statistics of uy or uz . Rather, we simply as-

sume that the streamwise longitudinal correlation coefficient

corresponding to eddies of size s may be approximated by

f (r) = exp
(

−r2/s2
)

. Physically, Eq.(8) corresponds to a

velocity signal, ux (x), which is statistically homogeneous in

x and composed of a superposition of Gaussian disturbances

of scale s, ux (x) ∼
∑

Ai exp
[

−2 (x − xi)
2 /s2
]

, whose cen-

ters, xi, and amplitudes, Ai, are randomly chosen. Each

Gaussian may be thought of as representing a transverse

slice through a vortical structure, say the leg of a hair-pin

or a small-scale worm.

Since
〈

u2
x

〉(s)
is an implicit function of s, we might

rewrite Eq.(8) as

〈

uxu′
x

〉

(s; r) =
〈

u2
x

〉(s)
(s) exp

(

−r2/s2
)

. (9)

As in the original analysis, we shall define Êx (y; s) through

the expression

1

2

〈

u2
x

〉(s)
= Êx (y; s) ds , (10)

where the inclusion of y in Êx (y; s) implies that the way

in which the streamwise energy is distributed across the

scales may depend on y. With these definitions and assump-

tions we arrive back at Eq.(5). Finally, we adopt Eq.(1) and

Eq.(2) as the simplest (and most plausible) approximation

to Êx (y; s),

sÊx (s) =
1

4
Bu2

∗ , � < s < L ,

sÊx (s) =
1

3
β̂ε2/3s2/3 , η̂ < s < � , (11)
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and so our model equation is, as before, Eq.(6), with � and

η̂ determined by Eq.(3) and (4). Expressions Eq.(9) - (11),

along with the auxiliary relationships Eq.(3) and (4), repre-

sent the entire physical content of our refined model.

It turns out that the coefficient α in Eq.(4) is readily de-

termined by demanding that the model spectrum integrates

to give the correct dissipation (see section ”Evaluating the

universal coefficients”). This leaves � as an unknown and

we shall take the ratio

λ =
�

(P/ε) y
, (12)

in Eq.(3) as our one free parameter. We shall see shortly

that specifying λ is sufficient to determine all of the other

coefficients in the model, and we shall choose λ = 1 .

The blocking effect of the wall

Another shortcoming of Davidson et al. (2006) is that it

fails to incorporate the kinematic requirement that u·dS = 0

at y = 0. This is a problem for our refined model only if, for

some kinematic reason, it invalidates approximation Eq.(9).

However, it is easy to find counter examples which show

that Eq.(9) is not excluded by the presence of wall blocking.

In this respect it is useful to consider the following model

problem which is relevant to the K.E. ∼ ε2/3s2/3 part of

the spectrum, if not the larger scales.

Let us go back to our isotropic velocity field, u, as-

sociated with a random distribution of Gaussian eddies

of size s. Let û be the homogeneous velocity distribu-

tion obtained from u through a reflection in the plane

y = 0, and u be the inhomogeneous velocity field de-

fined by u = 1
2

(u + û). Evidently u satisfies the wall-

blocking requirement that u · dS = 0 on y = 0 . More-

over, we can determine the statistical properties of u from

those of the homogenous velocity field u. In particular,

〈uxu′
x〉 (s; y; r) = 1

4
[〈uxu′

x〉 + 〈ûxû′
x〉 + 〈ûxu′

x〉 + 〈uxû′
x〉] =

1
2

[Qxx (rêx) + Qxx (rêx ± 2yêy)], where Qij is the velocity

correlation tensor associated with the homogeneous veloc-

ity field u. Next, isotropy of u allows us to substitute for

Qij in terms 〈uxu′
x〉, which, in turn, is given by 〈uxu′

x〉 =
〈

u2
x

〉(s)
exp
(

−r2/s2
)

. After some algebra we find

〈

uxu′
x

〉

(y; s; r) =
〈

u2
x

〉(s)
(y; s) exp

(

−r2/s2
)

. (13)

and

Φuu (y; s; k) =
1

2π1/2

〈

u2
x

〉(s)
(y; s) s exp

[

− (ks)2 /4
]

,

(14)

where
〈

u2
x

〉(s)
(y; s) is related to the streamwise energy of

the original isotropic field, 1
2

〈

u2
x

〉(s)
, by

〈

u2
x

〉(s)
(y; s) =

1

2

〈

u2
x

〉(s)
G (2y/s) , (15)

G (χ) = 1 +
(

1 − χ2
)

exp
(

−χ2
)

. (16)

The important result here is Eq.(13). For a given distance

from the wall the streamwise longitudinal correlation func-

tion takes the form

〈

uxu′
x

〉

(s; r) =
〈

u2
x

〉(s)
(s) exp

(

−r2/s2
)

, (17)

or f (r) = exp
(

−r2/s2
)

. In this respect the inhomogeneous

velocity field created by wall blocking is no different to the

initial isotropic velocity field.

Of course, this simple example is only relevant to the

K.E. ∼ ε2/3s2/3 part of the spectrum, for which G (χ) = 1.

However, it does at least show that there is no kinematic

reason to abandon Eq.(9) because of wall blocking. So we

shall adopt Eq.(9)-(11) as the basis of our model and explore

its consequences, comparing prediction with experiment.

Evaluating the universal coefficients

Let us now evaluate all of the coefficients in our refined

model: i.e. B, �, L and η̂ (or equivalently B, β̂, L and η̂).

Our starting point is to return to Eq.(3). Let us make the

ad hoc assumption that, when P = ε, we have � = y. This

amounts to setting our free parameter in Eq.(12), λ, to one.

Of course any value of λ of order unity is consistent with

our model, however, taking � = y seems a natural choice for

�. If we now allow for the weak dependence of P/ε on y, we

must replace Eq.(3) with

� =
P

ε
y , (18)

which, in turn, requires

(

3B/4β̂
)3/2

κ = 1 . (19)

It is demonstrated in Davidson and Krogstad (2008) that β̂

and β are related through the expression β̂ = β
2Γ(2/3)

, where

β ≈ 2.0 is Kolmogorov’s universal constant in the second

order structure function, (
〈

[Δv]2
〉

= βε2/3r2/3), and Γ the

usual gamma function. Expression Eq.(19) now requires B

to have the value

B =
2

3Γ (2/3)

β

κ2/3
. (20)

This fixes our two model parameters, B and β̂, in terms of

the universal constants β and κ. Note that Eq.(20) requires

B to be universal, which is consistent with the suggestion of

Perry et al. (1986).

We now determine the coefficient α in η̂ = αη. To this

end we note that, in isotropic turbulence, ε = ν
〈

ω2
〉

=

30ν
∫∞
0

k2Φuu (k) dk, and since the integral is dominated

by the small scales, this is also a reasonable approximation

in anisotropic turbulence. Substituting for Φuu (k) using

Eq.(6), dividing throughout by ε and discarding terms of

order Re−1 and smaller, we obtain α4/3 = 15β/2Γ (2/3).

This, in turn, yields α = 6.07 for β = 2.

Next we focus on the ranges � << r << L and � <<

k−1 << L, where it may be shown that, to within the ap-

propriate orders in k� and (kL)−1, Eq.(6) simplifies to

4kΦuu (k)

Bu2
∗

= 1 − 2

5π1/2
k� + O (k�)3

−
exp
[

− (kL/2)2
]

√
πkL/2

(

1 + O (kL)−1
)

,(21)

It is readily confirmed that

Φuu (k) =
Bu2

∗
4k

[

1 − 2

5π1/2
k� −

exp
[

− (kL/2)2
]

√
πkL/2

]

(22)

is accurate to within 1% for the range 0.1 < k� < 1.0.Thus

all the model parameters in Eq.(7), i.e. B and �, are uniquely

determined by the universal constants β and κ, and by the

measured distribution of P/ε. Adopting the generally ac-

cepted values of κ = 0.40 and β = 2.0, yields B = 1.81.
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It remains to fix L. To this end we note that the stream-

wise extent of the large-scale hair-pin packets observed in

boundary layers is thought to be of the order of 2.5δ → 3δ.

Hence we shall take L = 2.7δ. Thus our model should

capture the influence of the large-scale hair-pin packets (as-

suming their kinetic energy scales as u2
∗), but perhaps not

the effects of the non-universal very-large-scale structures

which are thought to reside in the outer regions of the bound-

ary layer.

Inner and outer scaling for Φuu (k)

Let us now compare the different forms of the com-

pensated spectrum, kΦuu (k) /u2
∗, for the inner and outer

ranges, y << k−1 << L and k−1 ∼ L, respectively. For

y << k−1 << L, which encompasses the k−1 range, we

have already seen that the model predicts

kΦuu (k)

u2
∗

=
B

4

[

1 − 2

5π1/2

P

ε
ky + O (k�)3

]

, (23)

which, for P = ε, is a function of the inner variable, ky, only.

However, when P �= ε we have the complication that P/ε is

a function of y/δ, which involves the outer variable, δ. Thus

our model predicts that kΦuu (k) /u2
∗ exhibits mixed scaling

in the inner, k−1 region. Of course, one may argue that the

O (ky) term in Eq.(23) is negligible for ky << 1. However,

we shall see shortly that, at typical values of Re, there is

almost no purely Φuu (k) ∼ k−1 region, and that the O (ky)

term is always significant.

Note also that Eq.(22) shows that, according to our

model, the value of k� (and hence ky) at which kΦuu (k) /u2
∗

is a maximum is a simple, monotonically increasing function

�/L ∼ y/δ . Thus, for fixed u∗δ/ν, the peak in kΦuu (k) /u2
∗

moves to higher ky as u∗y/ν increases. We shall illustrate

this in section ”Comparison with experimental data” where

it will become evident that one consequence of this behaviour

is that the width of the region governed by Eq.(23) is pre-

dicted to decrease with increasing y+ = u∗y/ν. In any

event, that part of kΦuu (k) /u2
∗ which surrounds the maxi-

mum in kΦuu (and hence lies immediately to the left of the

Φuu ∼ k−1 region) is clearly a mixed function of inner and

outer variables, at least according to our model.

For y << k−1 ∼ L, on the other hand, Eq.(6) yields the

simpler result
kΦuu(k)

u2∗
= B

4
[erf (kL/2) + O (k�)], which is a

function of the outer variable, kL, only. In summary, then,

our model predicts mixed scaling for the Φuu ∼ k−1 region,

and outer scaling for k−1 ∼ L. We shall see shortly that the

experimental data displays the same scalings in these two

regimes, and that our model does a good job of predicting

the distribution of kΦuu (k) /u2
∗ for the inner regime.

The prediction for
〈

u2
x

〉

Davidson and Krogstad (2008) showed that the vari-

ance of the streamwise velocity fluctuations, 2
〈

u2
x

〉

r→∞
=

u2
∗B

[

3
2

+ ln (L/�) − 3
2

(

η̂
�

)2/3
]

, and on substituting for η̂

and � using η̂ = 6.07η and Eq.(18) we obtain

〈

u2
x

〉

u2
∗

1
2
B

=
3

2
− ln (P/ε) + ln (L/y)

− 4.29 (P/ε)−1/2
(

u∗y

ν

)−1/2

. (24)

We might compare Eq.(24) with the classic prediction of

Townsend (1976) and Perry et al. (1986). Adopting the

notation of Perry et al., and omitting any viscous correction,

this takes the form
〈

u2
x

〉

u2
∗

= B1 + A1ln (L/y) , (25)

where A1 is assumed to be a universal constant and B1 is a

non-universal constant which depends on the nature of the

outer flow. Since B1 is non-universal, the coefficient of 3/2

in Eq.(24) must be regarded with suspicion: certainly our

model does not incorporate such detailed outer-layer dynam-

ics as long, streamwise rolls. Comparing the ln (L/y) terms,

on the other hand, we see that A1 = B/2 in our model.

Summary of model predictions

Let us now summarize the model predictions. B is a

universal constant, independent of the nature of the outer

flow, and given by

B =
2

3Γ
(

2
3

)

β

κ2/3
= 1.81. (26)

The spectrum is given by

4kΦuu (k)

Bu2
∗

= 1 − 2

5π1/2

P

ε
ky −

exp
[

− (kL/2)2
]

√
πkL/2

, (27)

which holds for 0.1 < ky < 1.0. For the broader range

ky > 0.01 we have to go back to the more general result

kΦuu (k)

Bu2
∗

=
k

4π1/2

∫ �

η̂

(s/�)2/3 exp
[

− (ks)2 /4
]

ds

+
1

4
[erf (kL/2) − erf (k�/2)] , (28)

where � = (P/ε)y, η̂ is given by η̂ = 6.07
(

ν3/ε
)1/4

, and

L = 2.7δ.

The variance of the streamwise velocity fluctuations, on

the other hand, is predicted by Eq.(24), and on substituting

for B this becomes
〈

u2
x

〉

u2
∗

= 1.36 − 0.91 ln (P/ε) + 0.91ln (L/y)

− 3.88 (P/ε)−1/2
(

u∗y

ν

)−1/2

. (29)

One novelty of Eq.(27)-(29) is that, having set λ = 1 and L =

2.7δ, there are no free parameter in these expressions, with

all of the coefficients determined by the universal constants

β and κ. Another is that there is a ln (P/ε) correction to

B1 in Eq.(29) which does not appear in other theories. It

is natural to ask if this correction is a genuine feature of

near-wall turbulence, or if it is merely an artefact of our

model. We shall see shortly that the experimental evidence

is ambiguous on this point, but tends to favour the former

interpretation.

Comparison with other theoretical studies

Before confronting Eq.(26)-(29) with the experimental

data, it is natural to compare them with other theoretical

models. In Davidson et al. (2006) B was found to be B =

1.83. This values is very close to the one given in Eq.(26), i.e.

B = 1.81. Since we have made only one ad hoc assumption

in the analysis, i.e. that � = y when P = ε, it is remarkable

that the empirical estimates of both coefficients are so close

to the model predictions.
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Next we note that expression Eq.(29) has the same struc-

tural form as that proposed by Perry et al. (1986) for

near-wall turbulence in which P = ε. In particular, Perry et

al. used the attached eddy hypothesis, in conjunction with

general scaling arguments, to suggest
〈

u2
x

〉

u2
∗

= B1 + A1ln (L/y) − C

(

u∗y

ν

)−1/2

(30)

for the log-law region. Here A1, B1 and C are constants

which are treated as free parameters to be determined by the

experimental data, with A1 and C assumed to be universal,

but B1 dependant on the type of outer flow (i.e. pipe, duct or

boundary layer) and on the choice of outer scale, L. Perry

et al. (1986) empirically found A1 = 0.90 and C = 6.06,

comparet to our estimates A1 = 0.91 and C = 3.88 in Eq.

(29). Given that our predicted value of C depends on the

value of α in accordance with C ∼ α2/3, and that our choice

of α is a little arbitrary (we have chosen to approximate

the dissipation scales by a truncated two-thirds law), the

comparison between our predictions of A1 and C and the

empirical estimates of Perry et al. (1986) is surprisingly

good. Note that Eq.(29) contains a (P/ε)−1/2 correction to

C, which is absent in other models.

The study of Perry et al. was subsequently refined by

many others, and the results are summarized in Marusic et

al. (1997). For example, Spalart (1988) suggests adopt-

ing C = 4.37 in Eq.(30), which is close to our estimate of

C = 3.88. Moreover, some authors have developed a more

elaborate viscous correction to replace C (u∗y/ν)−1/2 , while

Marusic et al. added a so-called wake function to Eq.(30)

which depends on y/δ but is negligible in the log-law re-

gion. In the refined model of Marusic et al. the value of A1

is taken as A1 = 1.03, which is also close to our predicted

value of A1 = 0.91. The measured values of B1, on the

other hand, vary somewhat, with Perry et al. (1986) report-

ing B1 = 2.67 for pipe flow and Marusic et al. suggesting

B1 = 2.2 for zero-pressure-gradient boundary layers.

In summary, then, our predictions of the universal con-

stants B and C, are all close the empirically determined

values. The key structural differences between our model

and that of earlier theories are that: (i) our real-space for-

mulation turns out to have a significant advantage over the

equivalent spectral formulation of Perry et al. (1986) at fi-

nite Re (see next section); and (ii) within the log-law region,

the non-universal coefficient B1 is predicted to be a function

of y/δ in accordance with

B1 = 1.36 − 0.91 ln (P/ε) . (31)

We shall show that this is probably (but not definitely) a

genuine feature of near-wall turbulence.

Comparison with experimental data

In the following we shall take L = 2.7δ. Figure 1 shows

a comparison of Eq.(27) with two sets of zero-pressure-

gradient boundary-layer data taken from Davidson et al.

(2006). The Reynolds number is Reθ = 12800. For this set

P/ε was found to fall continuously with increasing y, from

P/ε = 1.4 at u∗y/ν = 100 to P/ε = 0.9 at u∗y/ν = 500.

(See Davidson et al. for the details of how the data was

acquired and for the distribution of P/ε.) Evidently, the

fit between theory and experiment is excellent. Note that

there is a negligible k−1 range in Figure 1, with the O(k�)

correction term in Eq.(27) playing an important role.

The absence of a k−1 region in Figure 1 is interesting

and it highlights one weakness of the spectral formulation of

Perry et al. (1986), which would predict a plateau in Figure

1 of the form kΦuu(k)/u2
∗ ∼ constant. In our real-space

formulation, on the other hand, the equivalent statement

is sÊx(s)/u2
∗ ∼ 1, and this has led to the correct functional

form for Φuu(k) in the k−1 region. The key point is this; the

O(ky) correction in Eq.(27) is important at terrestrial values

of Re, and this correction arises naturally in a real-space

formulation of the problem, but is absent in the equivalent

spectral model.

Next, Figure 2 shows the predicted one-dimensional spec-

trum in compensated form for the wider range ky > 0.01,

which includes the inertial and dissipation ranges, as well

as the low-k end of the spectrum. Figure 2(a) shows

kΦuu (k) /u2
∗ plotted against the inner variable ky, while

Figure 2(b) shows the spectrum as a function of the outer

variable, kδ. The model prediction is compared with the

same data set as in Figure 1 (i.e.Reθ = 12800) and, although

there is some discrepancy at around kδ ∼ 2 , the comparison

is favorable elsewhere. In the light of the discussion above,

we might interpret the difference between the measured and

predicted spectra at kδ ∼ 2 as representative of the energy

of the so-called very-large-scale streamwise structures in the

outer layer. There is also some difference between Eq.(28)

and the experimental data in the dissipation range, but this

is to be expected, as we have modeled the dissipation range

in a simplistic manner, as an extended s2/3 region trun-

cated at s = 6.07η. Note that the width of the k−1 region

decreases as y+ = u∗y/ν increases, as anticipated in section

”Inner and outer scaling for Φuu (k)”.
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Figure 1: Comparison of Eq.(27) with data. ky is restricted

to the k−1 region.

Finally, Figure 3 compares our prediction of
〈

u2
x

〉

with

the Reθ = 12800 data set. The comparison is restricted to

the log-law range. Three curves are shown, one correspond-

ing to Eq.(29), a second corresponding to Eq.(29) in which

the additive constant of 1.36 has been changed to 1.70, and a

third in which the ln (P/ε) term is omitted from Eq.(29) and

1.36 is replaced by 1.70. The logic behind changing the ad-

ditive constant to 1.70 is that this constant is non-universal

and we have not incorporated a sufficiently detailed descrip-

tion of the outer-flow dynamics in our model to be able to

capture its value. Moreover, if our interpretation of Figure

2 is correct, the predicted value of the additive constant in

Eq.(29) should lie below the measured one, since we have

not captured the energy of the very-large-scale structures in

the outer layer. Note that the curve in Figure 3, in which

the ln (P/ε) term is omitted from B1, is a less good fit to

the data, suggesting that the ln (P/ε) correction is a genuine

feature of near-wall turbulence.
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Figure 2: As for Figure 1, but with the theoretical curve

extended to ky > 0.01. (a) kΦuu (k) /u2
∗ plotted against ky,

(b) kΦuu (k) /u2
∗ plotted against kδ.
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Figure 3: Comparison of Eq.(29) with the data (lower doted

line); with the additive constant 1.36 replaced by 1.70 (in-

termediate line); and without the ln (P/ε) term, but 1.36

replaced by 1.70 (upper dotted line).

DISCUSSION AND CONCLUSIONS

We have reinterpreted and extended the model of David-

son et al. (2006) by : (i) dispensing with the assumption

that the turbulence is locally isotropic; (ii) incorporating a

lower cut-off in the two-thirds law, and (iii) showing how all

the coefficients in the model can be determined from first

principles in terms of the universal constants β and κ. The

only ad hoc ingredient of our model lies in Eq.(18), where

we take � = y when P = ε, rather than � ∼ y.

The resulting model predictions are in excellent agree-

ment with Φuu (k) in the k−1 region, and a reasonable fit

to Φuu (k) elsewhere. The model also predicts the stream-

wise velocity variance,
〈

u2
x

〉

, and the predicted values of A1

and C in Eq.(30) are close to those measured by Perry et al.

(1986) and others (Spalart, 1988, Marusic et al.,1997).

Despite the naivety of our model, it does a reasonable

job of predicting Φuu (k), except at low k. There are two

possible explanations for this: (i) the apparent success could

simply be a combination of dimensional necessity plus coin-

cidence; or (ii) long, outer layer structures apart, perhaps

Φuu (k) care about the presence of the wall only to the ex-

tent that it imposes the energy scale u2
∗ over a range of eddy

sizes, and that the lower cut-off for this range is set by y

(which are the key physical ingredients of our model).

Option (i) is certainly a possibility,but perhaps unlikely,

if only because we have managed to pin down all universal

constants, B and C, and such information does not follow

from dimensional arguments. We are forced then to enter-

tain option (ii), that is, our model has captured the essential

physics of the log layer, at least as far as Φuu (k) is con-

cerned. But it too seems a little hard to believe, since our

model is extremely primitive yet many studies have shown

that the vorticity field is surprisingly organized in the log-

layer. These must certainly influence the statistics of ux, yet

our model, which does a reasonable job of predicting Φuu (k)

at moderate to high k, includes none of this detailed infor-

mation. So if we are to entertain option (ii), then we must

explain why the rich and subtle dynamics of the log-layer go

largely undetected by Φuu (k).

This apparent failure of Φuu (k) can be understood, at

least in part, by the fact that they are both time averages,

so that they average over many events. However, the prob-

lem goes deeper than this: it turns out that Φuu (k) average

over many scales of structure, representing cumulative sta-

tistical averages of all scales below r or π/k, with Φuu (k∗)

representing a weighted average of all the energy held in

structures below scale s = π/k∗.
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