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ABSTRACT 
We evaluate the pre-determined control with 

temporally- and spatially-periodic spanwise velocity inputs 
at the wall in a fully developed two-dimensional turbulent 
channel flow. The spatially-periodic control generally 
achieves better performance than the temporally-periodic 
control, the latter of which is called conventionally the 
spanwise wall-oscillation control. To analyze the drag 
reducing mechanisms, we focus on the near-wall structures 
such as quasi-streamwise vortices and low-speed streaks. As 
a result, it is found that the drag is reduced through the 
modified spatial phase-relationship between the streamwise 
vortex and the low-speed streak. 

 
INTRODUCTION 
Background and Objectives 

Turbulence control should have a substantial impact on 
reduction of energy consumption and mitigating 
environmental impacts. For example, the turbulent friction 
drag accounts for about a half of total energy consumed by 
an aircraft (Filippone, 2000), so that various control 
schemes have been proposed and tested. 

Compared with passive control, active control has a 
higher potential to manipulate turbulent flows more flexibly 
and robustly. Among active control schemes, predetermined 
control recently attracts much attention because it does not 
need numerous arrayed miniature sensors and actuators, 
which are to be distributed over a surface for feedback 
control. Recently, some spatio-temporally predetermined 
controls have been proposed, e.g., spanwise wall-oscillation 
control (Jung et al., 1992), local temporally-periodic 
blowing (Tardu, 1998), spanwise/streamwise traveling wave 
control (Du and Karniadakis, 2000; Min et al., 2006). 
Among them, control inputs are generally known to be more 
effective when applied in the spanwise direction than in 
other directions. However, the detailed drag reduction 
mechanism has not been fully understood. 

A general expression of these spanwise control inputs is 
given by: 

 

wwall (x,z,t) = W0 $ Real exp i % t + kx x + kzz( ){ }[ ],
 (1) 

 
where � = 2�/T, kx = 2�/�x and kz = 2�/�z. Note that T, �x and 
�z are the time period and wavelengths in the streamwise 
and spanwise direction, respectively. Obviously, when � 	 0 
and kx = kz = 0, Eq. (1) corresponds to the conventional 
wall-oscillation control. In this paper, we refer to it as the 
temporally-periodic control. 

The above-mentioned predetermined controls 
commonly suffer from large power input, although they 
generally achieve considerable drag reduction. The 
temporally-periodic control achieves a drag reduction of 
over 45%, while the highest energy saving rate is 7% at the 
most when the oscillation period is T+ = 125 and the 
amplitude is W0

+ = 4.5 (Quadrio and Ricco, 2004). Here, the 
variable with a superscript of + represents a value in the 
wall units. Hence, one of major issues is to develop a new 
control scheme that brings large drag reduction rate with 
less power input. Recently, a new control input, which is 
stationary, but longitudinally-periodic, has been proposed, 
and it is found more effective in terms of the net energy 
saving than the conventional temporally-periodic control. 
This control input corresponds to the case when kx 	 0 and � 
= kz = 0 in Eq. (1) (as shown in Fig. 1), and is named a 
spatially-periodic control. 

In this paper, we try to assess the temporally- and 
spatially-periodic controls. By systematically changing the 
temporal period and the wavelength of the control input, we 
evaluate the two control schemes in terms of the net energy 
saving, and discuss the optimal periodicity in the two 
controls. Finally, we discuss the drag reduction mechanisms 
by investigating the near-wall coherent structures. 
 

 
Fig. 1 Schematic of spatially-periodic input at the wall. 

 
 
Performance Indices for Control 

We consider a fully developed turbulent channel flow 
driven by a pressure gradient under a constant mass flow 
rate condition. The pumping power P is defined with the 
channel half-width � as: 
 

 P = �u (y)
&p 
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The instantaneous power input for the spanwise wall motion 
wwall is given by: 
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where Lx and Lz are the streamwise and spanwise lengths of 
the computational domain, respectively, and y is the distance 
from the wall. In order to evaluate a control scheme, we 
focus on the following three quantities, i.e., drag reduction 
rate, gain and energy saving rate. 
 
Drag Reduction Rate: the ratio of the friction drag 
coefficient Cf to that in the uncontrolled flow: 
 

 DR = C f 0 � C f( ) C f 0 . (4) 

 
A variable with a subscript of 0 represents a quantity in the 
uncontrolled case. 
 
Gain: the reduction of flow pumping power input divided 
by the control power input. 
 

 G = P0 � P( ) Pin . (5) 

 
Energy Saving Rate: the reduction of total power 
consumption divided by the pumping power in the 
uncontrolled flow. 
 

 S = P0 � P � Pin( ) P0
. (6) 

 
 
COMPUTATIONAL METHODS 

Governing equations are the incompressible 
Navier-Stokes and continuity equations. We use a periodic 
boundary condition in the streamwise and spanwise 
directions, and a no-slip condition at the two walls. A 
central finite-difference method is adopted for spatial 
discretization with the second-order of accuracy. The second 
order Adams-Bashforth method is used for convection terms, 
while the Crank-Nicolson method for viscous terms.  A 
fractional step method is applied to decouple pressure from 
the Navier-Stokes equation.  

All simulations are performed under a constant 
streamwise flow rate Ub unless otherwise stated. The bulk 
Reynolds number based on Ub and the channel half-width � 
is Reb = 2228, which corresponds to the friction Reynolds 
number Re� = 150 in the uncontrolled case. The 
computational domain is 2.5�� 
 2� 
 ��, in the streamwise, 
wall-normal and spanwise directions, respectively. The 
number of grids is (Nx, Ny, Nz) = (64, 128, 64), while the 
spatial resolutions are 	x+ = 18.4, 	y+

 = 0.189 ~ 5.70 and 	z+ 

= 7.36. In the case of spatially-periodic control, the 
streamwise domain is extended in accordance with the 
streamwise wavelength of the control input (Lx = 2.5�� ~ 
4��, 	x+ = 9.20 ~ 18.4). As for the control input, parameters 
in the temporally-periodic control are the amplitude W0

+ and 
the oscillation period T+, while W0

+ and the streamwise 
wavelength �x

+ in spatially-periodic control. By 

systematically changing the above two parameters, 256 
computations are repeated for each control scheme. 
 
CONTROL EFFECT 
Figures 2 (a) and (b) show obtained drag reduction rate in 
temporally- and spatially-periodic controls. In both figures, 
the vertical axis is the amplitude W0

+, while the horizontal 
axes are the temporal period T+ and the wavelength �x

+. In 
both controls, DR increases with increasing W0

+. There 
exists the optimal time period of T+~100 and wavelength of 
�x

+~1000 in temporally- and spatially-periodic controls, 
respectively. In general, the spatially-periodic control 
achieves higher DR than the temporally-periodic control. 
Figures 3 and 4 show comparison between two controls in 
terms of the gain G and the energy saving rate S. The 
spatially-periodic control gives higher G and S than the 
temporally-periodic control. From these results, we 
conclude that the spatially-periodic control is superior in 
terms of both the gain G and the energy saving rate S.  
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Fig. 2 DR
100 (%) as a function of time period, wavelength 
and amplitude: (a) temporally-periodic control, (b) 
spatially-periodic control. 
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Fig. 3 G as a function of time period, wavelength and 
amplitude: (a) temporally-periodic control, (b) 
spatially-periodic control. 
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Fig. 4 S 
100 (%) as a function of time period, wavelength 
and amplitude: (a) temporally-periodic control, (b) 
spatially-periodic control. 
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Fig. 5 Time traces of pumping power and control power 
input. 
 
 

Figure 5 shows time traces of the pumping power input 
Pin in the temporally- and spatially-periodic controls when 
T+ = 125 and �x

+ = 1178, respectively. The amplitude is 
fixed at W0

+ = 7.0 in both cases. Comparing the two controls, 
the time-averaged power input is almost the same, while the 
friction drag is more reduced in the spatially-periodic 
control. This explains why a higher net energy saving rate is 
achieved in the spatially-periodic control as shown in Fig. 4. 

To interpret the physical meaning of the optimum time 
period and wavelength in these controls, we assume a 
typical convection velocity of the coherent vortices as uc

+ ~ 
10 at y+ ~ 15. Then, we can convert the spatial periodicity 
into the temporal periodicity as follows: 

 
 Tc

+ = �x
+ uc

+ . (7) 
 
If �x

+ = 1000, the equivalent temporal period of the 
spatially-periodic control is Tc

+ ~ 100, which agrees well 
with the optimum period of the temporally-periodic control. 
It is known that the dynamics of coherent structures have a 
periodical generation-destruction cycle (Jimenez and Moin, 
1991; Kawahara and Kida, 2001). The present results 
suggest that the spanwise fluctuation of this particular 
frequency at the position of y+~15 is effective in diminishing 
the coherent structures near the wall. 
 
MECHANISMS OF DRAG REDUCTION 
Phase Analysis 

To explore the mechanisms of drag reduction in 
temporally- and spatially-periodic controls, we coordinated 
additional computations for each of the temporal period T+ = 
125 and the wavelength �x

+ = 1178. In both computations, 
the amplitude is set to be W0

+ = 7.0. These are run under a 
constant pressure gradient in order to keep the wall shear 
stress constant excluding the Reynolds number effects. 

When a periodic control is imposed, the resultant 
velocity field can be considered as a superposition of 
periodic and irregular fluctuations. Therefore, the 
instantaneous velocity ui is decomposed into a 
spatio-temporal mean component u i , a phase fluctuation 
component ˜ u i  and a random incoherent component � � u i : 

 
 ui = u i + ˜ u i + � � u i . (8) 
 

A phase-averaged quantity is given by: 
 

 u i + ˜ u i = ui �
= lim

N��

1

N
ui(�)

n = 0

N

� . (9) 

 
Figure 6 to 8 show the phase fluctuations of each 

velocity component. It is found that ˜ u  and ˜ v  are much 
smaller than that of ˜ w . It should be noted that ˜ v  in the 
temporally-periodic control is analytically zero due to the 
continuity equation. In addition, the temporal or spatial 
oscillation period of ˜ u  and ˜ v  is a half of that of ˜ w . This 
is due to the symmetric property of the present flow. 
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Fig. 6 Phase fluctuation parts of ˜ u . (a) temporally-periodic 
control, (b) spatially-periodic control. 
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Fig. 7 Phase fluctuation parts of ˜ v . (a) temporally-periodic 
control, (b) spatially-periodic control. 
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Fig. 8 Phase fluctuation parts of ˜ w . (a) temporally-periodic 
control, (b) spatially-periodic control. 
 
 

Fukagata et al. (2001) shows that, for a fully developed 
channel flow, the friction drag coefficient Cf is represented 
as an integral equation with the Reynolds stress � � u � v : 

 

 C f =
12

Reb

+ 12 (1� y)(� � u � v )
2�� dy. (10) 

 
Equation (10) is normalized by twice the bulk velocity 2Ub 
and the channel half-width �. This equation means that the 
suppression of Reynolds stress near the wall is primarily 

(a) (b) 

(a) (b) 

(a) (b) 
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important. The Reynolds stress can be decomposed by Eq. 
(8) into two parts, i.e., the phase fluctuation component 
� ˜ u ̃  v , and the random component � � � u � � v  as: 
 

 C f =
12

Reb

+ 12 (1� y)(� ˜ u ̃  v � � � u � � v )dy
2�� . (11) 

 
Contributions of the above two Reynolds stresses are shown 
in Fig. 9. It is revealed that contribution of � ˜ u ̃  v  is 
negligibly small so that � � � u � � v  governs the friction drag in 
both controls. In order to investigate the phase dependency 
of � � � u � � v ,  at different phases are also plotted in 
Fig. 9. The phase change of  in the spatially-periodic 
control is larger than that in the temporally-periodic control. 
This is because the correlation between u” and v” is more 
sensitive to the phase in the spatially-periodic control as 
shown in Fig. 10. 
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Fig. 9 Phase change of the Reynolds stresses,  and 

: (a) temporally-periodic control, (b) 
spatially-periodic control. 
 
 
Quadrant Analysis 

The incoherent Reynolds stress is further divided into 
four events depending on the signs of u” and v”. 
 

1.  Q1 event; u” > 0 and v” > 0. 
2.  Q2 event; u” < 0 and v” > 0. 
3.  Q3 event; u” < 0 and v” < 0. 
4.  Q4 event; u” > 0 and v” < 0. 
 

It is known that the above-mentioned four events are 
associated with a longitudinal vortex near the wall. 
According to Eq. (10), Q2 and Q4 events contribute to 
increase drag, while Q1 and Q3 decrease drag. 

The contribution of each event is shown in Fig. 11. 
Vertical axis is the weighted Reynolds stress in Eq. (11). 
Although the contributions of four events decrease in both 
controls, Q2 and Q4 events are reduced most significantly. 
This suggests that the drastic decrease in Q2 and Q4 is a 
primary reason for drag reduction in both controls. In 

addition, Q2 event in the spatially-periodic control is more 
attenuated than that in the temporally-periodic control. This 
explains why the spatially-periodic control is more effective 
in reducing drag. 
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Fig. 10 Correlation between u” and v”: (a) 
temporally-periodic control, (b) spatially-periodic control. 
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Fig. 11 Quadrant contribution of the incoherent Reynolds 
stress � � � u � � v . 
 
 
Conditional Sampling 

In order to further explore the turbulent structure under 
control, we calculate the conditional average of the flow 
field around the longitudinal vortex near the wall. First, we 
capture a longitudinal vortex by searching the point where 
the second invariant Q+ of deformation tensor is smaller 
than - 0.02 in the larger of y+ = 10 - 20. Among these 
selected points, we define vortex cores (cz, cy), where the 
local pressure becomes minimum. Since the response of the 
longitudinal vortex to wall velocity should depend on its 
rotational direction, we only choose vortex cores with �x > 
0. Then, we average the velocity field around the core for 
	z+ = z+

 – cz = – 40 ~ 40 in the spanwise direction, and y+ = 
0 ~ 40 in the wall-normal direction. 

Figure 12 shows the number of detected vortex cores. 
The horizontal axis is phase number n, which represents 
each phase of n/8� during the period. The total number of 

� � � u � � v 
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vortices is increased by 59  than that of uncontrolled in 
the temporally-periodic control, and decreased by 5.35  in 
the spatially-periodic control. Especially, the number of 
vortices at the phases of 2/8� ~ 7/8� is decreased in both 
controls, this trend is more prominent in the 
spatially-periodic control. If we detect negative vortex cores, 
the number of detected vortices is increased at 2/8� ~ 7/8� 
and decreased at 10/8� ~ 15/8�. Then, it is assumed that the 
phase-dependency of � � � u � � v  is caused by the number of 
longitudinal vortices at each phase. 

Figure 13 shows conditionally sampled flow structures. 
The spatial relationship of the low-speed streak and the 
longitudinal vortex is drastically changed at each phase. 
This trend agrees well with Choi et al. (2002) for spanwise 
wall-oscillation control. We consider these changes are the 
main reason for the reduction of � � � u � � v . At 1/8� ~ 7/8�, 
the spanwise wall velocity is positive, so that it opposes to 
the vortex motion above the wall. As a result, the low-speed 
streak region disappears, so that Q2 event is reduced. At 
10/8� ~ 16/8�, the spanwise wall velocity becomes negative, 
and high-speed region is dragged into below the vortex. As 
the same time, the low-speed streak is pushed up above the 
vortex. Then, Q2 event migrates far from the wall, and Q4 
event gets weak because the positive u” becomes small. In 
summary, Q2 event is always reduced regardless of the 
direction of wall velocity and the number of vortices. 
 
CONCLUSIONS 

We investigated the effects of temporally- and 
spatially-periodic spanwise control input on the near-wall 
coherent structures and the resultant drag reduction. As a 
result, we draw the following conclusions: 
1. Spatially-periodic control achieves better performance 

than temporally-periodic control. The spatially-periodic 
control can get larger drag reduction rate DR than 
temporally-periodic control at the same power input. The 
gain G and the energy saving rate S are generally larger in 
the spatially-periodic control than those in the 
temporally-periodic control. 

2. In both temporally- and spatially-periodic controls, there 
exist the optimal values for the time period of T+ ~ 100 
and wavelength �x

+ ~ 1000 in terms of drag reduction. 
Taking into account the typical convection velocity of 
coherent structures near the wall, the above optimal 
wavelength �x

+ ~ 1000 coincides with the optimal time 
period. This suggests that the spanwise fluctuation of Tc

+ 
~ 100 is effective in diminishing the active coherent 
structures near the wall. 

3. By decomposing the Reynolds stress into 
phase-fluctuating and random components, it is found that 
the random component is dominant in both temporally- 
and spatially-periodic controls. The random component of 
the Reynolds stress tends to diminish when the wall 
velocity amplitude reaches its maximum value. In 
addition, this phase-dependency is more significant in the 
spatially-periodic control. 

4. A conditionally-averaged flow field shows that the 
low-speed streak associated with the longitudinal vortex 
is drastically damped at the wall, regardless of the 
direction of wall velocity. They result in a decrease of Q2 
and Q4 event near the wall and also frictional drag 
regardless of the number of the longitudinal vortices. 

 

 
Fig. 12 The number of detected vortices; gray bar is 
uncontrolled, black bar is controlled: (a) temporally-periodic 
control, (b) spatially-periodic control. 
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Fig. 13 Conditionally-sampled flow structures shown with v” – w” velocity vectors and u”- contours, when �x > 0: left is 
temporally-periodic control, and right is spatially-periodic control. 

Sixth International Symposium on Turbulence and Shear Flow Phenomena
Seoul, Korea, 22-24 June 2009

603

미정댁
메인/컨텐츠




