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ABSTRACT 
The principal objective of the present simulation is to 

find the ability of Large-eddy simulation (LES) to resolve 
the transition mechanism of a laminar separation bubble 
apart from making a comparative assessment of subgrid-
scales (SGS) models. The Smagorinsky model modified by 
the low-Reynolds number correction of Voke (1996) and 
the dynamic model are used to account for the non-
resolvable subgrid stresses. Two values of the Smagorinsky 
constant Cs have been tested. Results from the dynamic 
model are closer to the DNS data compared to those from 
the Smagorinsky model. The simulation shows that no 
significant growth of fluctuations is observed in the first 27 
percent of bubble length. Three-dimensional motion and 
non-linear interactions leading to break down to turbulence 
occur in the second half of the mean bubble length. The 
simulation also illustrates that the transition process is 
characterized by break down of longitudinal streaks, which 
appear via vortex stretching mechanism. The near wall 
characteristics develop far downstream indicating a very 
slow relaxation towards an equilibrium turbulent boundary 
layer. 

 
 

INTRODUCTION
When a flow at relatively low Reynolds Number 

encounters an adverse pressure gradient, it may separate 
from the solid surface. The boundary layer leaves the 
surface approximately in a tangential direction forming a 
wedge shaped separated region. The separated but still 
laminar flow is highly sensitive to the external disturbances, 
which cause the flow to undergo transition. The transition 
region is located at the outer boundary of the separated 
shear layer; the thickness of the shear layer grows rapidly 
and it may finally reattach to the solid surface as a turbulent 
layer. The point where the laminar boundary layer separates 
from the solid surface is known as the point of separation 
and the point where the turbulent boundary layer reattaches 
to the surface again is known as reattachment point. The 
volume occupied by the regions of separated laminar flow 
and the turbulent flow is known as laminar separation 
bubble. The structure of a time averaged laminar separation 
bubble, given by Horton (1968) is reproduced in Fig. 1. 

The existence of a laminar separation bubble was first 
recognized by Jones (1934). The work was further carried 
out by Gault (1957). The most notable advancement in the 
understanding of bubble structure and behaviour came with 
the work of Gaster (1968). He investigated a large number 
of bubbles produced on a flat surface. A numerical study of 
2-D laminar separation bubble using N-S equations was 
done by Briley (1971). Pauley and co-workers (1990, 1993) 
first pointed out the unsteady nature of laminar separation. 
Pauley’s analyses were 2-D and the effects of small-scale 
turbulence were completely neglected. Alam and Sandham 
(2000) performed a direct numerical simulation (DNS) of 
the incompressible N-S equations to study flows where 
laminar boundary-layer separation is followed by turbulent 
reattachment. In a recent work of Sarkar and Voke (2006), 
the physical mechanism of transition of an inflectional 
boundary layer over the suction surface of a highly 
cambered low-pressure turbine blade under the influence of 
periodically passing wakes was studied in detail 

The appearance of a laminar separation bubble is very 
common in case of low Reynolds number flows on wings 
and blades. The performance of almost all aircraft is 
influenced by the appearance of the laminar separation 
bubble. A separation bubble is often formed on the suction 
surface of a LP turbine. The boundary layer development 
depends on the growth and breakdown of this bubble. The 
flow transition over the separation bubble is complex and 
has been investigated by several researchers. DNS carried 
out by Spalart and Strelets (1997) and Alam and Sandham 
(2000) explain the transition mechanism apart from the flow 
structures. However, despite the incredible computing 
power available today, the cost of DNS is prohibitive and 
LES may be an alternative.  

The present study is an effort to explore the viability of 
simulating the laminar separation bubble using LES. 
Simulations have been performed using the Smagorinsky 
model modified by the low-Reynolds number correction of 
Voke (1996) and the dynamic model. Two values of the 
Smagorinsky constant Cs have been tested. Results obtained 
from the simulations are compared to the available DNS 
data.  
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METHODS

  
Numerical procedures 
      In the present study, we perform LES of incompressible 
flow. The filtered mass and momentum equations can be 
expressed as, 
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Where, u  denotes the filtered velocity field and 

ij i j i ju u u u� � � denotes residual stress tensor (also known 

as subgrid scale stress, SGS). The above equations have 
been made dimensionless using free stream velocity U

D
and 

the boundary layer displacement thickness at inlet *

in) . The 

resulting Reynolds number is
*

*Re D� in

in

U
) &

)
, & being the 

kinematic viscosity. The Smagorinsky model modified by 
the low-Reynolds number correction of Voke (1996) and 
the dynamic model are used to account for the non-
resolvable subgrid stresses. The Smagorinsky model is 
based on local large-scale quantities and predicts nonzero 
residual stresses even in the laminar region. It is incapable 
of predicting the reverse cascade regions and overestimates 
the subgrid-scale dissipation. Part of the limitation has been 
overcome by using the low-Reynolds number model of 
Voke (1996), which is derived following the dissipation 
spectrum and is expected to simulate the transitional flow. 
The dynamic SGS model proposed by Germano et al. 
(1991) and modified by Lilly (1992) is used here, where the 
model coefficient is dynamically calculated instead of input 
a priori. 

 In the present simulations the momentum advancement 
is explicit using the second-order Adams-Bashforth scheme 
except for the pressure term which is solved by a standard 
Projection method. Pressure Poisson equation is discrete 
Fourier transformed in one dimension (in which periodicity 
of the flow and so uniformity of the geometry is imposed) 
and solved using the Bi-Conjugate Gradient method. The 
spatial discretization is second-order accurate using a 
symmetry preserving central difference scheme, which is 
widely used in LES owing to its non-dissipative and 
conservative properties. 

 
 

Computational details 
The Schematic view of the computational domain is 

shown in Fig. 2. The length scales are normalized with 
respect to inlet boundary layer displacement thickness (�*

in), 
and the velocity scale with respect to inlet free stream 

velocity (U�). The box length and the number of grid points 
used for the simulation are shown in the tabular form in 
Table 1. A uniform grid spacing is used in the streamwise 
(x) and spanwise (z) directions, whereas, a slow stretching 
is used in the wall normal direction (y). The flow field is 
initiated by specifying a Blasius velocity profile to the 
streamwise velocity component and the wall normal 
velocity is set to zero. At the outlet, a convective boundary 
condition has been used. At the lower boundary i.e. in the 
solid wall a no-slip condition is applied. In the present 
simulation, a disturbance strip is provided at the wall and 
upstream of separation to trigger the transition. The 
disturbance is specified by a function to the normal velocity 
following the work of Alam and Sandham (2000) 

 
 

v/ (x, z, t) = af exp[-bf (x-cf) 2]sin(�t) sin(�z)            (3) 

 

     where the constants af, ,bf and cf control the streamwise 
variation of the perturbation. � is the frequency of the 
disturbance and �, the span wise wave number.  
      The simulation is performed on a flat plate and thus an 
adverse pressure gradient is created by a suitable upper 
boundary condition for flow to separate. The normal 
velocity component at the upper boundary has been 
specified by a Gaussian suction profile given by the 
following expression, 

S(x) = as exp [-bs (x-cs)2]                        (4) 

 

where the constants as, bs and cs control the size, shape 
and location of the suction profile. The values of the 
constants can be found in Alam and Sandham (2000). A 
periodic boundary condition is applied to the homogeneous 
spanwise direction.  

The boundary-layer is allowed to grow over the flat 
plate with imposed boundary conditions. Solution is 
advanced with a time step of �t = 0.02 in non-dimensional 
units that needs 10000 iterations for a flow pass. We 
allowed seven flow passes with wall disturbances to 
develop the turbulences and the separation bubble. Statistics 
were taken for further ten flow passes.  All data generated 
are analyzed by time-averaging as well as through the study 
of instantaneous dynamics and spectral analysis. 

 A grid-resolution test is carried out using four levels of 
mesh, viz. 160 64 32� � , , and 200 64 32� � 200 64 64� �
260 64 64� �  grid points in the x, y and z directions. 
Variation of mean skin friction coefficient (Cf) for different 
grids is depicted in Fig. 3, while profiles of mean 
streamwise velocity along with the turbulent kinetic energy 
(TKE) are shown in Fig. 4. It can be seen from Fig. 3 that 
bubble length does not change significantly on further 
refinement of grid from . Fig. 4 further 
corroborates this fact. It shows that values of mean 
streamwise velocity change little on further refinement but 
TKE values do change a bit.  Hence, a grid of 200x64x64 
points is chosen for the calculations. The near wall 
resolution at x = 170, where an attached turbulent layer 

200 64 64� �
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appears, is �x+ = 20, �y+ =1.0 and �z+ =10. Here, the 

Reynolds number based on �*
in and U� ( ) is 500. *

in
Re

)

 
RESULTS AND DISCUSSION

The aim of the paper, as mentioned earlier, is to study 
the characteristics of laminar separation bubble subjected to 
wall disturbances through LES using Smagorinsky and 
dynamic models. Results obtained from these models are 
compared with the DNS data available in the literature to 
evaluate the suitability of these models for separating and 
reattaching flows. 

 
 

Mean skin friction coefficient 
Fig. 5 shows the variation of mean skin friction 

coefficient for different test cases and compared with the 
DNS. The skin friction coefficient is given by 

 where �
f

2
w eC 2 U/� � � w is the wall shear stress &  is 

the local free-stream velocity. The potential flow is locally 
distorted in the vicinity of the bubble that does not allow 
having a unique value of free-stream velocity. Hence the 
skin friction coefficient is normalized by a local free-stream 
velocity ( ) that was defined by integration of spanwise 
vorticity following Spalart & Strelets (1997)  

eU

eU

 

dy)y,x(U
y

0
ze ,���

The plot of the mean skin friction gives information 
about the mean bubble length. The separation and 
reattachment points of the mean flow are located by the zero 
crossing of the skin friction plots, Fig 5. In the skin friction 
distribution, the initial flat portion after the separation point 
corresponds to the dead air region of the bubble, whereas, 
the reverse flow vortex region is associated with a much 
larger negative skin friction. When compared with the 
corresponding data of Alam and Sandham (2000), it is 
evident that results from the dynamic model are closer to 
the DNS.  

 
 

Mean flow structures 
A few important variables which are used to describe 

the mean flow features are Reynolds numbers based on the 
boundary layer momentum thickness at separation ( Re

s6
) 

and transition length (Relt). The length of transition is taken 
here as the distance from separation point to the point of 
minimum skin friction. The length of separation bubble is 
also calculated from Cf distributions for both the 
Smagorinsky and Dynamic models. The values of these 
parameters have been given in the Table 2 and Table 3 and 
compared with the corresponding values obtained from the 
DNS (Alam and Sandham, 2000). A comparison of the 
tabulated values clearly shows that the Smagorinsky model 
with Cs =0.17 gives the worst results in general while the 
dynamic model provides the best. Fig. 7 shows the 
streamwise velocity contours for the dynamic model 
illustrating the shape of the bubble. The dead-air region and 

the reverse flow vortex are also indicated. The pictorial 
views of the bubbles from both the models are more or less 
the same but the similarity of the view from the dynamic 
model with that obtained from DNS is striking. 

Fig. 8 shows the mean streamwise velocity component 
and the r.m.s. of streamwise and wall-normal   velocity 
fluctuations. The horizontal axis of the Fig. 8 is arbitrarily 
chosen to represent the variation in magnitude of the 
variables with respect to the change in position along the 
streamwise direction. The boundary layer over the flat plate 
develops against an adverse pressure gradient that cause the 
boundary layer to separate from the solid surface near x=22 
which is reflected by an inflectional velocity profile. It also 
illustrates the growth of the shear layer, separation bubble 
with a backflow region and the reattachment point near 
x=43. After the reattachment, the separated shear layer 
relaxes downstream slowly towards an equilibrium 
turbulent boundary layer. Fig. 8 also indicates the evolution 
of turbulence after the separation. Though the perturbations 
start growing just downstream of separation, the initial 
growth rate, particularly for v , is slow and after x=39 the 
growth rate is appreciable. This location coincides with the 
location of minimum C

*

f. Thus it can be inferred that the 
generation of turbulence occurs mainly in the reverse flow 
region and not in the dead air region. After the 
reattachment, it takes several bubble lengths downstream to 
develop the near wall turbulent characteristics.  

 
 

Transition and reattachment  
The instantaneous flow field is very revealing and can 

be used to explain transition mechanism over the separation 
bubble, associated flow structures and their breakdown to 
turbulence after reattachment. 

Fig. 9(a) shows contours of streamwise velocity in x-y 
plane (side view) for z=30.0. The darkest gray-scale 
represents the separation region. It also illustrates 
thickening of shear layer over the bubble and the rollup of 
shear layer in the outer region illustrating that instability of 
shear layer occurs via Kelvin-Helmholtz mechanism. This 
process creates large-scale vortices that may retain their 
structures far downstream. Thus, near the reattachment, the 
boundary layer is characterized by predominant outer layer 
activities that may generate high turbulence in the outer 
region. Furthermore, referring to Fig. 6 depicting TKE 
profiles at different locations, the TKE is seen to rapidly 
increase over the rear half of the bubble. The peaks also 
shift away from the wall illustrating that turbulence is 
dominant in the outer part of the layer. Characteristics of 
near-wall turbulence develop only several bubble lengths 
downstream. 

Fig. 9 (b) shows the top view (x-z plane) of streamwise 
velocity contours for a wall normal location y=0.05. The 
top-view illustrates that the initial flow-field is two-
dimensional and the boundary layer separates as laminar. 
The perturbations appear to grow and the flow ceases to be 
two-dimensional downstream of x=25. Three-
dimensionality appears downstream of x=30 and 
longitudinal streaks, the characteristics of transitional layer, 
appear near x=39. This location corresponds to the 
minimum Cf (Fig. 5). The development of these low-speed 
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streaks near the reattachments regions and their breakdown 
is also depicted. The top view further confirms that the near 
wall turbulence develops far downstream of reattachment  

Fig. 9(c) shows the cross-sectional views (y-z plane) of 
streamwise velocity contours for different streamwise 
locations at the same time. The contours at x = 31.0 exhibit 
the initial symmetry and two-dimensionality of the flow. 
The two-dimensionality is seen to be slightly distorted at 
x=50 and is completely destroyed downstream of x=83 
making the flow three-dimensional. 

Fig. 10 shows that the value of shape factor ( * /) 6 ) at 
reattachment is 3.3 which is in excellent agreement with 
Horton’s value 3.5. Far downstream the value drops down 
to approximately 1.5 indicating approach to equilibrium. 
Fig. 11 shows the non-dimensionalized TKE production in 
the near wall region. Near the reattachment point, the flow 
is characterized by high active outer layer and this shifts to 
the inner layer with generation of turbulence after x=70. 
Beyond x= 90, collapse of the profiles is striking. They 
agree with each other and with the data of Kim et al. 
illustrating a slow approach to the equilibrium turbulent 
boundary layer.  

The contours of Reynolds stresses obtained from LES 
using the dynamic model are presented in Fig. 12. The 
imposed disturbances at x=10 are reflected in contours of 

u u* *  and w w* *  upstream of separation. These disturbances 
decay downstream until the highly unstable separated shear 
layer is encountered. Here, the Reynolds stresses are 
amplified reaching the maximum values near the 
reattachment point. In this region, the shear layer spreads 

away from the wall while steep gradients of u u* *  and u v* *  
near the wall appear far downstream, x=100. The 
distributions of shear stresses along with the magnitude are 
of levels similar to the DNS (Alam & Sandham, 2000). 

  In brief, the boundary layer just downstream of 
reattachment appears very different from an equilibrium 
turbulent boundary layer and the relaxation is very slow 
downstream. 

 
 

CONCLUSIONS 
Large eddy simulation of a short laminar bubble has 

been carried out using Smagorinsky and dynamic models 
and compared with the DNS results. The present LES with 
dynamic model produces encouraging results, illustrating 
transition process over the separation bubble. After the 
separation, almost no growth of fluctuations is observed in 
the first 27 percent of bubble length and thereafter the 
fluctuations increase rapidly. Thus, 3-D motion and non-
linear interactions leading to break down to turbulence 
occur in the second half of the mean bubble length. The 
simulation also illustrates that the transition process is 
characterized by break down of longitudinal streaks. 
Turbulence statistics reflects that the turbulent activities are 
dominant in the outer layer over the rear half of the bubble 
and near the reattachment. The near wall characteristics 
develop far downstream indicating a very slow relaxation 
towards an equilibrium turbulent boundary layer.  
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Table 1: Computational grid and box sizes 

 
Cells Lx(�*

in) Ly(�*
in) Lz(�*

in) 
200�64�64 200 10 30 

 
 

Table 2: points of separation and reattachment for 
different simulations 

 

 
 

Case Point of 
Separation 

Point of 
Reattachment 

Dynamic model 22 43 
Smagorinsky, CS =0.1 22 45 
Smagorinsky,CS =0.17 23 51 
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Table 3: Data related to mean bubble shape 

 

Case s
Re

6

 
lb/ )  *

in
�s/ )  *

in

 
Relt

DNS,Alam-
Sandham 246 16.4 0.49 6667 

Dynamic model 210 21 0.42 8500 
Smagorinsky, CS 

=0.1 213 23 0.43 9500 

Smagorinsky,CS 
=0.17 255 28 0.51 11000 
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Figure 2: Schematic drawing of the 
computational domain
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Figure 4: Profiles of mean streamwise velocity 
and TKE at indicated locations for different grids 

Figure 1: Classical structure of a short laminar 
separation bubble 
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Figure 6. (a) Mean streamwise velocity and (b)  
TKE profiles at different locations: solid lines  
for the Dynamic model, dashed lines for  
the Smagorinsky model with Cs =0.1 and dotted  
lines for Cs=0.17. Figure 3. Comparison of skin friction variation 

for different 
   

grids. 
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Figure 5. Comparison of skin friction 
variation for SGS models with DNS of Alam 
and Sandham (2000). 
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Figure 7   Streamwise velocity contours of 
the laminar separation bubble.  
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Figure 12. Contours of fluctuation statistics:  

(a) u u* * , (b) v v* * , (c) w w* *  and (d) u v* * . 
Maximum contour levels are 0.0282, 0.0095, 
0.0113 and 5.21x10-4 respectively. 

Figure 9. Instantaneous contours of streamwise 
velocity of a bubble with turbulent reattachment. 
Maximum level is 0.98, minimum level is -0.13 
and the darkest colour shows reversed flow. (a) 
(x,y)-plane at z = 30.0, (b) (x,z)-plane at y = 0.05,  
(c) (y,z)- plane at x = 31.0, 50.0, 83.0 and 131.0.  
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Figure 10. Shape factor after reattachment .  

Figure 8. Profiles of mean streamwise velocity, 
rms streamwise velocity fluctuation and rms 
wall-normal velocity fluctuation at different 
locations. 
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Figure 11. Time-averaged non-dimensional 
TKE production near the wall. 
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