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ABSTRACT

An extended version of the analytical wall-function

(AWF) is presented for solving mass transfer flelds across air-

water interfaces. By considering exact near-surface limiting

proflles of turbulence quantities such as the eddy viscosity

and the turbulent scalar ux, the prescribed turbulent dif-

fusivity proflle, which is a core assumption of the AWF, is

modelled to have the correct limiting behaviour. The resul-

tant AWF performs well to predict turbulent concentration

flelds under air-water interfaces at the Schmidt numbers of

1 ≤ Sc ≤ 1000.

INTRODUCTION

Although wall bounded ows and free surface ows

share some similar characteristics, they have many deflnitely

difirent points in mass transfer characteristics. Since work-

ing liquid in industrial machinery is often bounded by free

surfaces, it is essential to understand the ow and scalar

characteristics near free-surfaces for designing such uid ma-

chines. Moreover, liquid-gas free surfaces are common in

environmental issues and turbulent mass transfer across liq-

uid interfaces is very important.

Liquid-side free surface turbulence thus has been experi-

mentally investigated by several researchers such as Rashidi

& Banerjee (1988) and Komori et al.(1989). Measurements

of the turbulent mass transfer mechanism near free-surfaces

have been less extensive since there is di– culty in analysing

the phenomena due to that the scalar (concentration of a so-

lute) boundary-layer is very much thinner than that of the

ow boundary-layer. The Schmidt number Sc is, indeed, in

the order of O(103) in the liquid side. In this condition, the

scalar boundary layer thickness becomes 10 % of the ow

boundary layer thickness. Although thanks to the recent

development of laser induced uorescence (LIF) techniques,

such di– culty is now being cleared (Herlina & Jirka, 2008;

Walker Peirson, 2008), space resolved accurate experiments

of free surface mass transfer are still rather di– cult com-

pared with those of ow flelds.

Numerical approaches are thus promising. Detailed ow

structures have been revealed by several direct numeri-

cal simulation (DNS) studies (e.g. Komori et al., 1993;

Lombardi et al., 1996). Calmet & Magnaudet (1998) and

Hasegawa & Kasagi (2007) performed numerical simulations

to investigate the detailed mass transfer mechanisms by re-

spectively large eddy simulation (LES) and DNS techniques.

Although lots of knowledge on the ow and mass trans-

fer mechanisms has been accumulated as above, not so many

studies have discussed on engineeringly practical schemes to

estimate those phenomena. Suga & Abe (2000) discussed a

low Reynolds number (LRN) nonlinear three-equation eddy

viscosity model to predict free surface scalar transfer. LRN

models, which require high grid resolutions for capturing

flne-scale ow and scalar transfer near-surfaces, however, are

not very practical for an environmental issue, unfortunately.

For example, in order to discuss the amount of the absorp-

tion of atmospheric carbon dioxide (CO2) at the sea surface,

one should obtain turbulent mass transfer across the large

air-sea interface.

Therefore, in order to provide a truly practical strat-

egy, the present study develops a scheme which treats high

Schmidt number free surface turbulent mass transport. The

basic idea employed is the analytical wall-function (AWF)

approach originally proposed by Craft et al.(2002) for wall

turbulence. With this approach, one only needs rather

coarse wall-function grids instead of flne grids resolving the

thin boundary-layers. In fact, Suga (2007) successfully ob-

tained high Prandtl number wall heat transfer by extending

the AWF approach with consideration of the near-wall lim-

iting behaviour of the eddy viscosity. The present modelling

scheme thus follows this modelling strategy.

NOMENCLATURE

AU , AC : integration constants
c, c : concentration and mean concentration of a so-

lute
c�, cμ : model constants

CC : sum of the convection and the difiusion terms

of the scalar equation
CU : sum of the convection and the difiusion terms

of the momentum equation
k, kP : turbulence energy, k at node P

P : pressure or cell centre of the wall adjacent cell
Pk : production term of k equation
Sc : Schmidt number

Sct, Sc∞t : turbulent Schmidt numbers
qs : surface concentration ux

Reτ : friction Reynolds number: uτ δ/ν
uiuj : Reynolds stress

uτ , U+ : friction velocity, U/uτ

U, V : mean velocity components
−ρvc : turbulent concentration ux
yv , yc : viscous sub-layer thicknesses

y∗ : normalized distance: y
√

kP /ν
α, αc : cμc�, κ/y∗

c

αct, αcd : κSc/Sct, αct/y∗
c

β : model coe– cient

t : turbulent difiusivity
δ : boundary layer thickness
ε : dissipation rate of k

κ∗ : coe– cient of turbulent length scale: αβ
μ, μt : viscosity, turbulent viscosity
ν, νt : kinematic viscosity, kinematic turbulent viscos-

ity
ρ : uid density

τs : surface shear stress
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Figure 1: Near-surface distribution:(a)near-surface cell ar-

rangement and the eddy viscosity distribution, (b)turbulent

Schmidt number distribution, (c)turbulent difiusivity distri-

bution.

AWF MODELLING FOR HIGH SCHMIDT NUMBER

FLOWS

Flow fleld modelling

In the AWF for wall turbulence, the wall shear stress

and scalar ux are obtained through the analytical solution

of simplifled near-wall versions of the transport equations

for the wall-parallel momentum and scalar. In case of forced

convection regimes, the main assumption required for the an-

alytical integration of the transport equations is a prescribed

variation of the turbulent viscosity μt. The distribution of μt

over the wall adjacent cell P is modelled as in a one-equation

turbulence model:

μt = ρcμk1/2� = ρcμk1/2c�y � αμy∗, (1)

where � is the turbulent length scale, α = c�cμ and y∗ ≡
yk

1/2
P /ν. (The coe– cients c� = 2.55, cμ = 0.09 are used.)

In the wall turbulence, it is well known that the theoret-

ical limiting variations of the velocity components and their

uctuations are

u = buy + cuy2 + · · · ,
v = cvy2 + · · · ,
u′ = b′uy + c′uy2 + · · · ,
v′ = c′vy2 + · · · .

(2)

Since the eddy viscosity relates the Reynolds stress with

the mean velocity gradient as −ρuv = μt∂U/∂y, the above

relations lead to

−ρ{b′uc′vy3 + · · ·} = μt(bu + · · ·), (3)

and it is obvious that μt ∝ O(y3) in the viscous sublayer.

Since Eq.(1) does not satisfy this limiting condition, near-

wall damping is normally applied. However, in order to

consider the viscous sub-layer efiects without a damping

function, Craft et al.(2002) modelled the proflle of μt as

μt = αμ max {0, (y∗ − y∗
v)} , (4)

in which μt is still linear in y∗ and grows from the edge

of the viscous sub-layer yv . Although this form still does

not satisfy the limiting condition, it was conflrmed that the

efiects of such un-satisfaction were marginal for ow flelds

(Suga, 2007).

In contrast to the wall turbulence, the theoretical limit-

ing variations of the velocity components and their uctua-

tions near a gas-liquid interface are

u = au + buy + cuy2 + · · · ,
v = av + bvy + cvy2 + · · · ,
u′ = a′

u + b′uy + c′uy2 + · · · ,
v′ = a′

v + b′vy + c′vy2 + · · · .

(5)

Thus, the above relations lead to

−ρ{a′
ua′

v +(a′
ub′v +a′

vb′u)y+ · · ·} = μt(bu +2cuy+ · · ·), (6)

and it is obvious that μt ∝ O(y0). Thus, the near-interface

variation of μt can be modelled as:

μt = κ∗μ max{0, (y∗ − y∗
v)} (7)

where y∗
v can be negative to make the interface ow “rough

turbulence”. (In such a case, yv is no longer the viscous

sub-layer thickness.) This form is the same as in the rough-

wall AWF of Suga et al.(2006). The model coe– cient κ∗ is

now rewritten as κ∗ = αβ with β, a factor of modifying the

turbulence distribution for the near free-surface regions.

In the case of non-surface-disturbance where a′
v = 0,

Eq.(7) needs to be μt = κ∗μy∗ as in Fig.1(a) since Eq.(6)

leads to μt ∝ O(y). Then, the near-wall simplifled momen-

tum equation:

∂

∂y∗

[

(μ + μt)
∂U

∂y∗

]

=
ν2

kP

[

∂

∂x
(ρUU) +

∂P

∂x

]

︸ ︷︷ ︸

CU

, (8)

can be integrated over the cell P analytically as

dU

dy∗ =
CUy∗ + AU

μ {1 + κ∗y∗}
, (9)

U =
CU

κ∗μ
y∗ +

{

AU

κ∗μ
−

CU

κ∗2μ

}

ln [1 + κ∗y∗] + BU . (10)

The integration constants AU , BU are determined by apply-

ing boundary conditions at the free surface s and the cell

face n:

AU =
κ∗μ(Un − Us) − CUy∗

n

ln(1 + κ∗y∗
n)

+
CU

κ∗ , (11)

BU = Us. (12)

The values at n are determined by interpolation between the

calculated node values at P and N . The surface shear stress

is then obtained as

τs = μ
dU

dy

∣

∣

∣

s

= μ
k
1/2
P

ν

dU

dy∗

∣

∣

∣

s

=
k
1/2
P AU

ν
. (13)
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Table 1: Proposed model coe– cients for non-disturbance

free-surface.

κ∗ α αc β cμ c� y∗
c Sc∞t

αβ cμc� κ∗/y∗
c 0.55 0.09 2.55 11.7 0.9

The local generation rate of k, Pk(= νt(
dU
dy

)2), is written

as

Pk =
κ∗kP y∗

ν

(

CUy∗ + AU

μ{1 + κ∗y∗}

)2

, (14)

which can then be integrated over the wall-adjacent cell to

produce an average value Pk for solving the k equation as

Pk =
κ∗ρkP

μ3y∗
n

∫ n

0

y∗
(

CUy∗ + AU

1 + κ∗y∗

)2

dy∗

=
κ∗ρkP

μ3y∗
n

[

C2
U

2κ∗2 y∗2 +
CU (2AU − 2CU/κ∗)

κ∗2 y∗

+
{AU − CU/κ∗}2

κ∗2(1 + κ∗y∗)
+ {AU − CU/κ∗}

×
{AU − 3CU/κ∗}

κ∗2 ln(1 + κ∗y∗)

]n

0
(15)

For wall turbulence, the following model of the dissipa-

tion rate of k:

ε =

{

2νkP /y2
ε , if y < yε

k1.5
P /(c�y), if y ≥ yε

(16)

was employed in the AWF by Craft et al.(2002) with the

characteristic dissipation scale yε. However, at the free sur-

face, the value of ε is

εs = ν(b′2u + b′2v + b′2w ), (17)

which is slightly difierent from the wall value:

εw = ν(b′2u + b′2w ). (18)

Moreover, even in the case of non-surface-disturbance, the

limiting behaviour of k is,

k =
1

2

{

(a′2
u + a′2

w ) + 2(a′
ub′u + a′

wb′w)y

+[b′2u + b′2v + b′2w + 2(a′
uc′u + a′

wc′w)]y2 · · ·
}

,(19)

which is obviously very difierent from that near a wall. Con-

sequently, the relation that is appropriate near a wall:

ε = 2ν

(

∂
√

k

∂y

)2

� 2νk/y2, (20)

cannot be applied and hence Eq.(16) cannot be suitable to

the free surface turbulence. Since the above discussion on

the limiting behaviour does not produce useful results, the

present study simply returns to

εP = k1.5
P /(βc�yP ), (21)

that is usually used in the standard wall-function approach

though coe– cient β is multiplied to the length scale for mod-

ifying it to the free surface turbulence.

Concentration fleld modelling

As for the concentration of a solute, with a constant sur-

face concentration condition, the surface limiting variations

of the concentration and its uctuation are

c = ac + bcy + ccy2 + · · · ,
c′ = b′cy + c′cy2 + · · · . (22)

When the turbulent concentration ux −ρvc is modelled as

−ρvc = μ t∂c/∂y, the limiting variations lead to

−ρ{b′ca′
vy + (b′cb′v + c′ca′

v)y2 + · · ·} = μ t(bc + 2ccy + · · ·).
(23)

Thus, the turbulent difiusivity behaves as t ∝ O(y). (In the

case of non-surface-disturbance, t ∝ O(y2) due to a′
v = 0

as discussed by Hasegawa & Kasagi, 2007.)

In the context of the eddy viscosity models, the turbulent

scalar difiusivity t is modelled using a turbulent Schmidt

number as t = μt/(μSct), thus with Eq.(7) one can rewrite

this as

t = κ∗ max{0, (y∗ − y∗
v)}/Sct (24)

In order to satisfy the limiting behaviour of t near the

surface, the limiting behaviour is required as Sct ∝ O(y−1).

Thus, as shown in Fig.1(b), Sct can be modelled as

Sct =

{

Sc∞t /(y∗/y∗
c ) (0 ≤ y∗ ≤ y∗

c ),

Sc∞t (y∗
c < y∗),

(25)

where Sc∞t is a constant for the region away from the sur-

face. This simple two segment variation proflle of Sct leads

to the turbulent difiusivity distribution as in Fig.1(c):

t =

{

αcy∗2/Sc∞t (0 ≤ y∗ ≤ y∗
c ),

κ∗y∗/Sc∞t (y∗
c < y∗),

(26)

for the case of non-surface-disturbance where t ∝ O(y2).

The coe– cient αc and y∗
c have the relation: αc = κ∗/y∗

c for

connecting the two segments.

Note that, in the case of surface-disturbance and a con-

stant surface ux condition, where t ∝ O(y0), yc should

be 0.

Then, with the assumption that the right hand side terms

can be constant over the cell, the simplifled concentration

equation in the surface adjacent cell P :

∂

∂y∗

[(

μ

Sc
+ μ t

)

∂c

∂y∗

]

=
ν2

kP

[

∂

∂x
(ρuc)

]

︸ ︷︷ ︸

CC

, (27)

can be easily integrated analytically to form the boundary

conditions of the concentration at the surface, namely the

surface concentration ux:

qs = −
μ

Sc

dc

dy

∣

∣

∣

s

= −
k1/2

ν
AC , (28)

or the mean surface concentration:

cs = cn +
qsScDC

ρk
1/2
P

+
ScCCEC

μ
, (29)

where the integration constants AC , DC and EC are

AC = {μ(cn − cs)/Sc + CCEC} /DC , (30)

DC =
1

α
1/2
cd

tan−1(α
1/2
cd

y∗
c ) −

1

αct
ln

(

1 + αcty∗
c

1 + αcty∗
n

)

,

(31)

EC =
1

αct
(y∗

c − y∗
n) −

1

α2
ct

ln

(

1 + αcty∗
c

1 + αcty∗
n

)

−
1

2αcd
ln (1 + αcty

∗
c ) , (32)
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Table 2: Boundary conditions for the sheared free-surface ow.

U V k ε c

free surface Eq.(13) 0 ∂k/∂y = 0 Eq.(21) Eq.(29)

free slip ∂U/∂y = 0 0 ∂k/∂y = 0 ∂ε/∂y = 0 qs = const.

δ

x

y

computational domain

free surface

free slip

air

water
δ

x

y

computational domain

free surface

free slip

air

water

Figure 2: Computational domain of free surface ows.

with αct = κ∗Sc/Sct and αcd = αct/y∗
c .

The presently optimized model coe– cients for non-

disturbance free-surface are listed in Table 1.

APPLICATION RESULTS

Computational conditions

The test case is a fully developed counter-current air-

water ow driven by a constant pressure gradient studied

by Hasegawa & Kasagi (2007) with the friction Reynolds

number Reτ = 150. Fig.2 illustrates the coordinate sys-

tem and the computational domain applied in the present

computations. Only the water phase is solved with the non-

disturbance and the constant concentration conditions at the

free surface. At the bottom of the domain (lower boundary),

a free slip and a constant concentration- ux conditions are

imposed. The mean concentration fleld is solved by the eddy

difiusivity model with a constant turbulent Schmidt number

of 0.9. Table 2 summarises the presently applied boundary

conditions of the turbulent quantities. Note that the AWF

is not applied at the free slip boundary.

Since a constant concentration- ux condition is applied

at the free slip boundary, a relatively flne grid resolution is

used near there whilst the cell height facing to the inter-

face is about y+ = 30. Thus, computational grid used has

10(x) × 25(y) cells non-uniformly distributed in the depth

(y) direction.

Since the turbulent difiusivity near the free slip bound-

ary behaves as t ∝ O(y), it is necessary to damp it near

the free slip boundary to obtain reasonable proflles of the

concentration. Thus, in the present study, the following ad

hoc form is employed:

t =
μt

Sct
× min{1, 2(1 − y/δ)}. (33)

Results and discussions

Firstly, the standard k − ε model is applied to the

core ow region. The obtained ow fleld results are com-

pared with the DNS data of Hasegawa and Kasagi (2007)

in Figs.3(a) and (b). Fig.3(a) shows that the agreement be-

tween the present and the DNS results of the mean velocity
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Figure 3: Flow fleld proflles: (a)mean velocity distribution,

(b)Reynolds shear stress distribution.

distribution is satisfactory and the proflles are signiflcantly

lower than that of the universal log line of wall turbulence.

Fig.3(b) also conflrms that the prediction ability of the

present model for the Reynolds shear stress is satisfactory.

Figs.4(a) and (b) compare the mean concentration

(C+ = |c−cs|ρuτ /qs) flelds of 1 ≤ Sc ≤ 103. All the present

concentration proflles reasonably agree with the DNS results

even at the high Schmidt numbers. This means that with

the correct limiting variation of the turbulent difiusivity, the

concentration flelds can be reasonably captured by the AWF

no matter how Sc is high.

For further evaluation of the model performance, the sec-

ond moment closure of Craft & Launder (2001), which is

called the TCL model, is also applied to the core region of the

ow fleld. As for the boundary conditions of the Reynolds

stresses, although each component has its own speciflc con-
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Figure 4: Mean concentration distribution: (a)Sc=1,

(b)Sc=100–1000.

dition at the free surface, simply the conditions:

∂(uiui/k)

∂y

∣

∣

∣

P

= 0, (34)

and

−ρuv|P = μt
∂U

∂y

∣

∣

∣

P

, (35)

are imposed at node P. Fig.5 compares the mean velocity dis-

tribution and conflrms that the present AWF also performs

well with the second moment closure. However, as shown

in Fig.6, the Reynolds normal stresses are not reproduced

well particularly near the free surface. This is because the

anisotropic distribution originates at the surface though the

present AWF cannot determine the anisotropic distribution

at the boundary.

CONCLUSIONS

For the case of non-surface-disturbance, the analytical

wall function of free surface turbulence is proposed by mod-

ifying the version developed for wall turbulence. The scalar

model for high Schmidt number concentration flelds is also

developed by considering the correct near-surface limiting

behaviour of the turbulence quantities. The concluding re-

marks of the present study are:
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Figure 5: Comparison of the mean velocity distribution.
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Figure 6: Reynolds normal stress distribution.

(1) By linking to the correct near-surface variation of the

turbulent viscosity, the improved scheme has proven its good

performance in a fully developed turbulent free surface ow

with counter shear.

(2) For the scalar flelds, the presently proposed scheme

successfully reproduces the concentration flelds at 1 ≤ Sc ≤
1000 by introducing the modelled turbulent difiusivity pro-

flle that satisfles the near-surface limiting behaviour.

(3) The proposed scheme is also applicable to a second

moment closure. However, since the wall-function does not

provide anisotropic distribution near the surface, the proflles

of the Reynolds normal stresses near the surface are not

satisfactory.
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