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ABSTRACT

Turbulent Couette-Poiseuille and Couette flows inside a

square duct at bulk Reynolds number 10,000 are investi-

gated by the Large Eddy Simulations. Mean secondary flow

is observed to be modified by the presence of moving wall

where the symmetric vortex pattern vanishes. Secondary

flow near the top corner shows a gradual change of vortex

size and position as the moving wall velocity increased. It is

interesting to note that a linear relation exits between the

angle and the parameter r = Ww
WBulk

, and a change in slope

occurs at r ∼1.2. Near the moving wall due to the reduc-

tion of the streamwise velocity fluctuation at the moving

wall, turbulence structure gradually moves towards a rod-

like axi-symmetric turbulence as r increases. As the wall

velocity increases further for r > 1.2, the rod like structure

disappears, and turbulence reverts to the disk like structure.

INTRODUCTION

Turbulent Couette-Poiseuille and Couette flows inside a

square or rectangular cross-sectional duct are of consider-

able engineering interest because of their relevance to the

compact heat exchangers and gas turbine cooling systems.

The most studied flow is the turbulent Poiseuille flow inside

a square duct and is characterized by existence of the sec-

ondary flow of Prandtl’s second kind, which is not observed

in circular ducts nor in laminar rectangular ducts. The sec-

ondary flow was observed to consist of a counter-rotating

vortex pair symmetrically placed around the bisector of each

corner. Although weak in magnitude (only a few percent of

the streamwise bulk velocity), secondary flow is found to

be very significant on the momentum and heat transfer and

is often utilized as an enhancement of particle transport or

heat transfer in different industrial devices.

There are also investigations directed to explore the influ-

ences of boundary wall geometry, non-isothermal effect, free

surface and system rotation on the secondary flow pattern

within turbulent Poiseuille duct flows (Vazquez and Metais,

2002; Pallares and Davidson, 2002, Brogolia et al., 2003).

The above investigations have implied that with careful ma-

nipulation, the secondary flow is very much promising on

enhancement of particle transport or heat transfer in dif-

ferent industrial devices. Also, the turbulence anisotropy

in non-circular ducts could be modified by bounding wall

geometry, heating, free surface and system rotation. Previ-

ous studies on turbulent Couette-Poiseuille flows have been

conducted on simple plane channels. Thurlow and Klewicki

(2000) found negative production of streamwise turbulence

near the forward moving wall. Kuroda et al. (1993), Hwang

and Lin (1998, 2003) identified different turbulence statis-

tics and structures between the stationary and moving wall.

However, little is known about the effect of moving wall on

the turbulence anisotrpy and hence the resulting secondary

flow within duct flows. Lo and Lin (2006a,2006b) found that

the secondary flow structure correlates with the ratio of the

speed of the moving wall and duct bulk flow, albeit the ratio

was less than 1.17. It is not clear how the secondary flow

behaves as the ratio increases.

In the present study, the assessment to this question is

investigated by simulating the turbulent Couette-Poiseuille

and Couette flows in a square duct based on large eddy sim-

ulation. Focus will be on the alternations of the secondary

flow pattern within the duct and hence its turbulence struc-

ture due to the elevations of the ratio of moving wall velocity

and duct bulk velocity.

MATHEMATICAL FORMULATIONS

Governing Equation and modeling.

The governing equations are grid-filtered, incompress-

ible continuity and Navier-Stokes equations. In the present

study, the Smagorinsky model (Smagorinsky, 1963) and dy-

namic model (Gemano et al., 1991) are adopted to model

the sub-grid stress (SGS)

τa = τs
ij − δij

3
τs
kk = −2ρ(CsΔ̄)2|S|Sij (1)

τa = τs
ij − δij

3
τs
kk = −2CDΔ

2|S|Sij (2)

where Cs = 0.1, δij is the Krinecker delta, Sij = ∂ui
∂xj

+
∂uj

∂xi
,

and, Δ defined as (ΔxΔyΔz)1/3 is the length scale. It can

be seen that the mesh size is used as the filtering operator.

For Smagorinsky, A Van Driest damping function accounts

for the effect of the wall on sub-grid scales is adopted here

and takes the form as, lm = κy[1 − exp(− y+

25
)].

For dynamic model, the model coefficient CD is allowed

to be a function of space and time. Following Lilly (1992),

the coefficient is obtained using the least square approach,

i.e.

CD = −1

2

〈LijMij〉
〈MijMij〉

(3)

Lij − δij

3
Lkk = −2CDMij (4)

Mij = ̂�
2

|̂S|̂Sij − Δ2 ̂|S|Sij (5)

where the brackets 〈〉 denote an average over the homoge-

neous directions for the numerator and denominator. They

are assumed to be functions of the inhomogeneous direction

and time only.
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Numerical and parallel Algorithms.

A semi-implicit, fractional step method proposed by Kim

and Moin (1985) and the finite volume method are employed

to solve the filtered incompressible Navier-Stokes equations.

Spatial derivatives are approximated using second-order cen-

tral difference schemes. The non-linear terms are advanced

with the Adams-Bashfoth scheme in time, whereas the

Crank-Nicholson scheme is adopted for the diffusion terms.

The discretized algebraic equations from momentum equa-

tions are solved by the preconditioned Conjugate Gradient

solver. In each time step a Poisson equation is solved to

obtain a divergence free velocity field. Because the grid spac-

ing is uniform in the streamwise direction, together with the

adoption of the periodic boundary conditions, Fourier trans-

form can be used to reduce the 3-D Poisson equation to

uncoupled 2-D algebraic equations. The algebraic equations

are solved by the direct solver using LU decomposition.

The computational domain consists of D × D × 2πD (D

is the width of the duct) in the horizontal (x), vertical (y)

and streamwise (z) directions, respectively. Here, u, v and

w are used to denote, respectively, the velocity components

in the horizontal, vertical, and streamwise directions. No-

slip boundary conditions for the velocity components are

applied at the four bounding walls and periodic boundary

condition is employed in the steramwise direction at the in-

let and outlet of the square duct. Top wall (y=D) is either

stationary or moving in the positive streamwise direction,

while other bounding walls are at rest. In all the cases con-

sidered here the grid sizes employed are (128x128x96) and

(128x128x128), respectively for Smargorinsky and dynamic

models in spanwise, normal, and streamwise directions. Grid

is symmetrically clustered using hyperbolic tangent func-

tions towards the walls on the cross-plane of the duct with

minimum and maximum spacing of �x+,�y+ approxi-

mately as 1.2 and 7.8. In the streamwise direction, the grid

is uniformly distributed with �z+ ∼ 35 − 40.
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Figure 1: Parallel performance of present simulation.

In the present parallel implementation, the single pro-

gram multiple data (SPMD) environment is adopted. The

domain decomposition is done on the last dimension of

the three dimensional computation domain due to the ex-

plicit numerical treatment on that direction. The simula-

tion is conducted on the HP Integrity rx2600 server (192

Nodes) with about 80 percent efficiency when 48 CPUs

are employed[?]. Linear speed-up is not reached in present

parallel implementation mainly due to the global data move-

ment required by the Fast Fourier Transform in the homoge-

nous direction.

Table 1: Table I: Flow conditions of simulated cases adopting

Smagorinsky model; Reτ is defined by the mean friction ve-

locity averaged over four solid walls (t=top,b=bottom wall);

Ww denotes the velocity of the moving wall and WBulk is

the bulk velocity; Rec = WwD
ν

; r = Ww
WBulk

.

128x128x96 Reτt Reτb ReBulk Rec r

Case P 604 604 10000 0 0

Case CP1 441 586 10000 6000 0.6

Case CP2 332 581 10000 9136 0.91

Case CP3 317 574 10000 11420 1.14

Case CP4 387 570 10000 13704 1.37

Case CP5 480 563 10000 15998 1.60

Case CP6 654 551 10000 20556 2.06

Case CP7 744 544 10000 22840 2.28

Case CP8 919 526 10000 27408 2.74

Case C 1167 512 10247 34260 3.34

Kuroda et al. 35 308 5178 6000 1.16

Table 2: Table II: Flow conditions of simulated cases using

the Dynamic Smagorinsky model

128x128x128 Reτt Reτb ReBulk Rec r

Case P 636 636 10000 0 0

Case CP1 422 612 10000 6000 0.6

Case CP3 324 595 10000 11420 1.14

Case CP5 493 580 10000 15998 1.60

Case CP7 744 544 10000 22840 2.28

Kuroda et al. 35 308 5178 6000 1.16
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Figure 2: Mean streamwise velocity along the wall bisector

for case P to C.

RESULTS

Schematic picture of the flows simulated is shown in Fig-

ure 2. Here, fully developed, incompressible turbulent flows
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Figure 3: Streamlines of mean secondary flow for case P to

C; solid lines for counter-clockwise rotation, dashed lines for

clockwise rotation.

inside a square duct are considered, where the basic param-

eters are summarized in Tables I and II. Reynolds number

is kept at 10000 except for Couette flow and the importance

of Couette strain rate in this combined flow field can be

indicated by the ratio r = Ww/Wbulk. To maintain the con-

stant bulk Reynolds number, the driving pressure gradient

is modified at each time step by the bulk Reynolds number.

Mean secondary flow structure.

Mean streamwise velocity distributions from top wall

along the wall bisector, ie. x/D=0.5, at different mean Cou-

ette strain rates are shown in Figure 2. For Case P and Case

CP1, the velocity distributions follow closely the 2D channel

flow DNS data of Moser et al. (1999)(Ret:395) and Iwomoto

et al.(2002) (Ret:300). However, at higher Couette velocity

due to the reduction of shear rate, departures from the log-

arithmic distributions are observed for cases CP2-C, which

are consistent with the findings of plane Couette-Poiseuille

flow of Kuroda et al. (1993). It should be noted that for

all cases considered logarithmic distributions prevail at the

bottom wall, except in the vicinity of side wall.

Streamlines of mean secondary flow for cases P to C are

shown in Figure 3. Due to the symmetrical nature of the

flow, only half the domain is shown here for simplicity. The

vortex structure is clearly visible, where solid and dashed

lines represent the counter-clockwise and clockwise vortices,

respectively. The presence of the moving wall does influence

the patterns of the secondary flow, where the two clockwise

rotating vortices gradually merge in tandem with Couette

velocity. The angle formed by the horizontal x axis and

the line joining the two vortex cores becomes a good rep-

resentation of the relative vortex positions. This angle is

calculated and plotted against the parameter r defined by

r = (Ww/WBulk). It is interesting to note that a linear re-

lation exits between the angle and the parameter r, as shown

in Figure 4, and a change in slope occurs at r ∼ 1.2. Both

the Smagorinsky model (SM) and the dynamic Smargorin-

sky model (DSM) show similar trend.
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Figure 4: Angles between vortex cores near the top corners.
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Figure 5: Wall stress variation-cases P-CP4.

Local wall stress(τw/τw) distributions along the top moving

and bottom stationary walls are shown in figs. 5 to 7, where

Fig. 5 show the comparisons of predicted wall stress using

SM and DSM. Both the SM and DSM predict similar wall

stress distributions, shown in Fig. 5, indicating that at this

grid density the influence of the sub-grid stress modelling

is not influential. Thus further computations will adopt SM

approach. By reference to Figs. 6 and 7, the distributions at

the stationary wall follow that of a turbulent Poiseuille flow

and is good agreement with DNS data of Huser et al.(1993)

The wall stresses along the moving wall show dramatic differ-

ent profiles, especially near the top corner. Here, high shear

stress is generated by the fast moving wall and the nearby

stagnant fluid. The zero wall stress location, which roughly

coincide with the zero ∂W/∂y region, moves towards the

central region as the wall velocity increases. As the moving

wall velocity increases further, the wall stress distributions

approach their bottom wall counterpart.
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Figure 6: Wall stress variation-cases P-CP4.
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Figure 8 show the cross-plane distribution of the resolved

turbulence kinetic energy. In the Poiseuille flow the dis-

tribution shows locally maximum near the stationary wall.

For the Couette-Poiseuille flows, near the moving wall, tur-

bulence kinetic energy is first damped near the moving wall,

which is caused by the reduced mean shear at this region.

The decrease in turbulence kinetic energy is more evident

near the wall-bisector (x/D=0.5) than near the side wall.

As the moving wall velocity increases, the distribution of the

maximum turbulence kinetic energy is gradually moved from

the side stationary wall to the top corner, and then migrates

to the top wall. However, near the bottom stationary wall,

the distributions of the kinetic energy are not influenced by

the top moving wall. As for Couette flow, the kinetic energy

distribution is similar to the Coueete-Poiseuille flows at high

level of r.

Detailed examinations of the turbulence quantities can be

seen in Figures 9 and 10, showing the predicted turbulence

production and kinetic energy distributions along the wall

bisector at x/D=0.5. Here, the DNS data of plane chan-

nel flow (Iwamoto et al., 2002) is included for comparisons.

By reference to Figures 9 (a)-(b), it is clearly observed that

the turbulence level near the stationary wall remains un-

changed. However, near the moving wall, it is decreased

first in tandem with the increase of the moving wall velocity.

However, beyond r > 1.2, kinetic energy gradually increases

as Couette velocity increases further. The levels of the ki-

0.5

1.0

1.0

1.5

2.0
2.5

4.0

X
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1
CP1

0 5

0.
5

0.5

0 5
1.0

1.0

1.5

1.5

2.0

2.0

2.0

2.0

2.5

2.5

2.5

3.0

3.0

4.0

X

Y

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
Poiseuille

0
5

0.5
1

0

1.0

1.0

1.5

1.5

2.
0

2.0

2.5

2.5

3.0

3.0

3.
5

4.0

4.0

4.0

4.
5

X
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1
CP3

2.5

2.5

2.5

3.0

3.0

3.5

3.5

3.5

4.0

4.5

4.5
5.0

5.0

X

Y

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
CP6

1.02.0

3.0

3.0

4.0

4.0

4.0

5.0

5.0

5.0

6.0

6.0

7.0

7.0

8.0
10.0
12.0

X
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1
CP8

4.0

6.0

8.0

10.0

12.0

14.0

20.0

X
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1
Couette

Figure 8: Turbulence kinetic energy for case P to C.
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Figure 9: (a)-(b)Turbulence kinetic energy for SM: case P

to Co. (c)Turbulence kinetic energy for SM and DSM.

netic energy correlate well with the production terms shown

in Figs. 10 (a)-(b). It is also interesting to note that the low

level of kinetic energy production gradually moves away from

the centre core and towards the moving wall. Comparisons

of the predicted kinetic energy levels and the production

rates are shown in Figs. 9 (c) and 10 (c). Similar distribu-

tions are obtained, which indicates again the sub-grid stress

modelling is not influential here.

Anisotropy invariant map.

The anisotropy invariant map (AIM) is introduced here

in order to provide more specific description of the turbu-

lence structures. It was demonstrated that the mean and

turbulence fields are modified by the Couette wall. The

invariant functions provide more specific description of tur-
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bulence structure and hence anisotropy. The invariants of

the Reynolds stress tensors are defined as II = −(1/2)bijbji

, III = (1/3)bijbjkbki and bij =< u′
iu

′
j > / < u′

ku′
k >

−1/3δij . A cross-plot of -II versus III forms the anisotropy

invariant map (AIM). All realizable Reynolds stress invari-

ants must lie within the Lumley triangle ( Lumley, 1978).

This region is bounded by three lines, namely two compo-

nent state, −II = 3(III + 1/27), and two axi-symmetric

states, III = ±(−II/3)3/2. For the axi-symmetric states,

Lee and Reynolds (1985) described the positive and negative

III as disk-like and rod-like turbulence, respectively. The

intersections of the bounding lines represent the isotropic,

one-component and two-component axi-symmetric states of

turbulence.

The anisotropy invariant maps at several horizonal loca-

tions are presented in Figs. 11 and 12. Here, DNS data of

plane channel flow (Moser et al., 1999) and plane Couette-

Poiseuille flow (Kuroda et al., 1993) are also included for

comparison. Near the stationary wall (y/D ≤ 0.5), tur-

bulence behaviors of different Couette-Poiseuille flows re-

semble those of the Poiseuille flow. In particular, the

turbulence structure is similar to the plane channel flow,

where turbulence approaches two-component state near the

stationary wall due to the highly suppressed wall-normal

velocity fluctuation. It moves toward the one-component

state till y+ ∼ 8 (Antonia et al., 1977; Salinas-Vázquez

and Métais, 2005) and then follows the positive III axi-

symmetric branch (disk-like turbulence, Lee and Reynolds,

1985) to the isotropic state at the duct center. However,

near the moving wall due to the reduction of the streamwise

velocity fluctuation at the moving wall, turbulence structure

gradually moves towards a rod-like axi-symmetric turbu-

lence (negative III) as r increases. As the wall velocity

increases further for r > 1.2, the rod like structure disap-

pears, and turbulence reverts to the disk like structure, as

is shown in Fig. 12.

CONCLUSIONS

The turbulent Couette-Poiseuille and Couette flows in-

side a square duct are investigated by present simulation

procedures. Mean secondary flow is observed to be modified

by the presence of moving wall where the symmetric vortex

pattern vanishes. Secondary flow near the top corner shows

a gradual change of vortex size and position as the moving

wall velocity increased. The vortex pair consists of a domi-

nate (clock-wise) and relatively smaller (counter-clockwise)

vortex. It is interesting to note that a linear relation exits

between the angle and the parameter r, and a change in

slope occurs at r ∼1.2. Near the moving wall due to the re-

duction of the streamwise velocity fluctuation at the moving

wall, turbulence structure gradually moves towards a rod-

like axi-symmetric turbulence (negative III) as r increases.

As the wall velocity increases further for r > 1.2, the rod

like structure disappears, and turbulence reverts to the disk

like structure.
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