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ABSTRACT 
Direct numerical and large eddy simulations of 

incompressible turbulent flows over deep and shallow 
cavities were performed in the range of 600≤ReD≤12000 to 
investigate the influence of the incoming turbulent boundary 
layer on self-sustained oscillations of the shear layer. When 
the turbulent boundary layer of Reθ=300 approached the 
open cavity with ReD=3000, the energy spectra of the 
pressure fluctuations showed energetic frequencies in the 
range of 0.15≤ ωθ ≤0.3. Conditionally averaged flow fields 
disclosed that the energetic frequencies arise from the 
separation of high speed streaky structures rather than from 
a geometric peculiarity of the cavity. The same energetic 
frequencies were observed in a backward-facing step flow 
as well as in deep and shallow cavity flows, despite the 
different geometries of these systems. In the turbulent cavity 
flow of ReD=12000, however, the peak frequencies of the 
energy spectra at cavity lengths of L/D = 1 and 2 were 
found to correspond to the N th modes with N = 2 and 3 
respectively. These N th modes were very similar to the 
frequency characteristics of self-sustained oscillations 
reported for laminar cavity flows. Inspection of 
instantaneous pressure fluctuations as well as spanwise-
averaged pressure fluctuations revealed that regular 
shedding of quasi two-dimensional vortical structures was 
responsible for the peak frequency in the energy spectra. 

 
 

INTRODUCTION 
Flows over open cavities occur in many engineering 

applications, for example landing gear wells and bomb bays 
in aircraft and sunroofs in automobiles. The presence of the 
open cavity generates strong self-sustained oscillations of 
velocity, pressure and, occasionally, density. To understand 
the mechanism underlying such oscillations and prevent 
undesirable effects, numerous experimental and numerical 
studies have been carried out since Norton (1952) 
investigated the buffeting of bomber airplanes due to air 
flow over their bomb bays. Nevertheless it is unclear 
whether the turbulent incoming boundary layer can give rise 
to self-sustained oscillations in incompressible turbulent 

cavity flows (Rockwell 1998). Pereira & Sousa (1994, 
1995) observed periodically oscillating shear layers in the 
flow of a turbulent incoming boundary layer over an open 
cavity. Lin & Rockwell (2001) also observed self-sustained 
oscillations in water-tunnel experiments, and suggested that 
the oscillations are related to large-scale vortical structures. 
In contrast, Grace, Dewar & Wroblewski (2004) found no 
evidence of self-sustained oscillations in velocity and 
pressure data from their experiment with a turbulent 
incoming boundary layer. Chatellier, Laumonier & Gervais 
(2004) observed self-sustained oscillations of the mixing 
layer in their experiments, and theoretically analyzed the 
fluctuating behaviors of turbulent cavity flows at low Mach 
number. They suggested that the oscillating process is not 
governed by periodic shedding of coherent structures but by 
convective waves of naturally unstable mixing layer. 
However, Ashcroft & Zhang (2005) observed the shedding 
of large-scale vortical structures by Galilean decomposition 
of the instantaneous and fluctuating velocity fields. The 
coherent vortical structures were present in the majority of 
PIV images, although well-defined structures were not 
always observed. The authors pointed out small peaks in the 
pressure spectra as evidence of weak tonal components; 
however strong self-sustained oscillations were not 
observed. The main objective of the present study was to 
elucidate whether a fully turbulent boundary layer can give 
rise to self-sustained oscillations and, if such oscillations 
exist, whether they are related to coherent vortex formation. 
To achieve this, we performed DNSs and LESs of 
incompressible turbulent flows over deep and shallow 
cavities for a wide range of Reynolds number (600≤ ReD 
≤12000), where ReD is the Reynolds number based on the 
cavity depth. The present simulations used L/θ values of up 
to 80, which is sufficiently large to identify the existence of 
self-sustained oscillations. The turbulent flow over a 
backward-facing step was also simulated for comparison. 
Turbulence statistics and frequency spectra of fluctuating 
quantities were obtained to analyze the fluctuating 
behaviors of the turbulent cavity flows. Conditional-
averaging and spanwise-averaging were employed to extract 
spatial maps of the pressure fluctuations.  
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Figure 1: Schematic diagram of computational domain. 
 
 

NUMERICAL METHOD 
A schematic diagram of the computational domain is 

shown in Figure 1. For all of the present simulations, the 
turbulent boundary layer was provided at the inlet with the 
realistic velocity fluctuations of Reθ =300. DNSs of 
incompressible flows over an open cavity were performed 
for two Reynolds numbers, ReD =600 and 3000. The cavity 
flows at high Reynolds number (ReD =12000) were 
simulated using a LES with a dynamic sub-grid scale model. 
The simulation conditions used in the present study are 
summarized in Table 1. 

 
Table 1: Simulation conditions. 

 

DRe  DL / , θ/L  zyx NNN ××  
1,       2 289×95×129 600 2,       4 321×95×129 
1,      10 417×133×129 
2,      20 513×133×129 
4,      40 705×133×129 
6,      60 897×133×129 

3000 

∞,     ∞ 577×133×129 
1,      40 705×169×257 12000 2,      80 897×169×257 

 
 

IDENTIFICATION OF PRESSURE FLUCTUATIONS 
Before examining in detail whether self-sustained 

oscillations exist, it is helpful to compare the characteristics 
of the pressure fluctuations observed in the turbulent cavity 
flows at the three Reynolds numbers. Figure 2 shows the 
energy spectra of the pressure fluctuations at (x/D, y/D) = 
(0.5, 1.0) for length-to-depth ratios (L/D) of 1 and 2. The 
energy spectra of the systems with ReD = 600, 3000 and 
12000 are shown in Figures 2(a), (b) and (c), respectively. 
The frequency is non-dimensionalized by using the 
momentum thickness of the incoming turbulent boundary 
layer, i.e. ωθ =2πfθ/U∞. Energetic frequencies are observed 
in all of the spectra, although the pressure fluctuations at 
ReD = 600 show broad spectra due to small energetic 
increases. As shown in Figures 2(a) and (b), the pressure 
fluctuations are energetic in the frequency range of 
0.15≤ωθ≤0.3, regardless of the length-to-depth ratio. This 
suggests that the energetic pressure fluctuations observed 
for the ReD =600 and 3000 systems are little affected by the  
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Figure 2: Energy spectra of pressure fluctuations 

measured at (x/D, y/D) = (0.5, 1.0). 
 
 

 
Figure 3: Time histories of pressure fluctuations 

corresponding to the energy spectra of Figure 2. Spanwise 
length and time are normalized by the momentum thickness 
of incoming turbulent boundary layer. 

 
 

geometrical dimensions of the cavity. In the ReD =12000 
spectra (Figure 2(c)), however, the peak in the fluctuation 
spectrum shifts to lower frequency as the cavity length 
increases. Specifically, the frequency range exhibiting 
energetic pressure fluctuations is 0.15≤ωθ≤0.2 for L/D =1, 
but about 0.08 to 0.12 for L/D =2. This frequency shift in 
the fluctuation spectrum as a function of cavity length is 
very similar to the previous observation that, as the cavity 
length was increased, the frequency of self-sustained 
oscillations in a system with a laminar incoming boundary 
layer decreased (Gharib & Roshko 1987). 

In order to characterize the pressure fluctuations in the 
frequency range around the peak in the energy spectrum, a 
more instructive view can be derived by examining the 
evolution over time of the fluctuation distribution in the 
spanwise direction. Figure 3 shows such time histories, in 
which the horizontal and vertical axes represent the 
spanwise direction and time, respectively, and the pressure 
fluctuations corresponding to the energy spectra of Figure 2 
are represented. Close inspection of Figure 3 discloses that 
the pressure fluctuations in the ReD =600 and 3000 
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Figure 4: Energy spectra of fluctuating quantities at four 

streamwise locations between the leading edge (x/D =0) and 
the trailing edge (x/D = 1). The length-to-depth ratio is unity 
and ReD =12000. 

 
 

systems (Figures 3(a)~(d)) exhibit qualitatively different 
characteristics from those in the ReD =12000 system 
(Figures 3(e) and (f)). Specifically, at ReD =600 and 3000, 
the pressure undergoes three-dimensional fluctuations 
intermittently. At ReD =12000, by contrast, quasi two-
dimensional pressure fluctuations are regularly observed, 
albeit with slight variations away from two-dimensional 
behavior. Note that the spanwise length scale of Figures 
3(e) and (f) is four times longer than that of Figures 3(a)~(d). 
Detailed comparison of the ReD =12000 systems with L/D 
=1 and L/D =2 (Figures 3(e) and (f) respectively) indicates 
that the time scale of the pressure fluctuations increases 
with increasing cavity length. This finding is consistent with 
the dependence of energetic frequencies on cavity length 
shown in the energy spectra of the ReD =12000 system. 

 
 

SPECTRAL CHARACTERISTICS AT RED=3000 
To examine the spectral characteristics at a length-to-

depth ratio of unity and ReD =3000, we determined the 
frequency spectra of the velocity and pressure fluctuations 
at four representative streamwise locations between the 
leading edge (x/D =0) and the trailing edge (x/D =1): the 
region immediately downstream of the leading edge (x/D 
=0.05), the center of the cavity (x/D =0.5 and 0.75), and the 
impingement region near the trailing edge (x/D =0.95). For 
a length-to-depth ratio of unity, no energetic frequencies are 
observed in the spectra of streamwise velocity fluctuations 
(Figure 4(a)). The spectra of the vertical and spanwise 
velocity fluctuations show energetic frequencies, although 
the energetic increases are very small (Figure 4(b) and (c)). 
In the spectra of the pressure fluctuations, however, 
energetic frequencies are clearly observed between ωθ =0.15 
and 0.3 (Figure 4(d)). This energetic frequency range is 
converted to 0.24≤StD≤0.5 using StD =fD/U∞, which is 
consistent with the previous observation of slightly more 
intense pressure fluctuations at the frequencies of StD =0.38 
and 0.51 (Chang et al. 2006). Why are energetic frequencies 
observed in the frequency spectra of pressure fluctuations? 
To answer the question, we examined in detail the time 
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Figure 5: Time histories of pressure fluctuations 

measured at (x/D, y/D)=(0.5, 1.0) when the length-to-depth 
ratio is unity. The white and black circles represent local 
minimum points satisfying p′<−1.5prms and local maximum 
points satisfying  p′>1.5prms , respectively. 
 
 
evolution of the pressure fluctuations at (x/D, y/D) = (0.5, 
1.0) at locations along the spanwise direction, as shown in 
Figure 5. Figure 5 shows parts of Figure 3(c) where the 
horizontal and vertical axes represent the spanwise direction 
and time, respectively. Both time and spanwise length are 
non-dimensionalized by using the momentum thickness of 
the incoming turbulent boundary layer. As discussed, the 
pressures show intermittent three-dimensional fluctuations 
with periods between 20 and 30. The range of the periods is 
in accord with the energetic frequencies of the pressure 
spectra (0.15≤ωθ≤0.3). This indicates that the intermittent 
strong fluctuations in the pressure are responsible for the 
energetic frequencies.  

To show the coherent structures that generate the 
intermittent pressure fluctuations, the instantaneous flows 
were conditionally averaged. By analyzing the full time 
histories of the pressure fluctuations at (x/D, y/D) = (0.5, 
1.0), we identified the points on the map of time versus 
spanwise location where the pressure fluctuations were a 
local minimum satisfying p′<−1.5prms or a local maximum 
satisfying p′>1.5prms. For example, in Figure 5, the white 
and black circles represent the local minima and maxima 
identified in this way, respectively. At each time point, the 
instantaneous flow was averaged around the spanwise 
locations. Figure 6(a) shows contour plots of the pressure 
fluctuations and vector plots of the velocity fluctuations in 
the lip plane under the conditions of local minimum and 
p′<−1.5prms while Figure 6(b) displays two-dimensional 
plots on the cut-off plane of Figure 6(a). The dotted lines 
represent negative pressure fluctuations whereas the solid 
lines represent positive pressure fluctuations. As seen in 
Figures 6(a) and (b), the counter-clockwise rotating vectors 
represent a vortical structure with strong negative pressure 
fluctuations. This structure has length scales of ∆x/D 
=0.4~0.5 in the streamwise direction and ∆z/D ≤1 in the 
spanwise direction. Figure 6(c) shows three-dimensional 
pressure fluctuations averaged under the condition of local 
maximum and p′>1.5prms, while Figure 6(d) displays two-
dimensional plots on the cut-off plane of Figure 6(c). These 
representations show that positive pressure fluctuations  
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Figure 6: Conditional-averaged contours of pressure 

fluctuations and vectors of velocity fluctuations. 
 
 

 
Figure 7: Top-view of instantaneous high speed streaky 

structures and pressure fluctuations on the plane of y/D =1. 
The high speed streaky structures are represented by the 
contours of u′' ≥ 0.18U∝. 

 
 

occur between two vortical structures. The vortical structure 
near the leading edge has just been generated and the other 
vortical structure is likely to impinge on the trailing edge. 
The positive pressure fluctuations are interpreted as being 
induced by the two vortical structures, as observed in the 
vortical shedding of a separated shear layer. Moreover, the 
strong negative pressure fluctuations of the vortical 
structures and the induced positive pressure fluctuations are 
responsible for the intermittent pressure fluctuations. 

As seen in Figures 6(a)~(d), the positive fluctuations of 
streamwise velocity (u′>0) occur near the leading edge and 
in the vicinity of the center along the lip line of the cavity 
geometry. It is interesting to note that the vertical 
distribution of u′ is very similar to that of the incoming 
turbulent boundary layer. For example, the maximum 
fluctuations are observed near y/D =1.07 (Figures 6(b) and 
(d)), which exactly corresponds to y+≈12 of the turbulent 
boundary layer, where the streamwise velocity fluctuations 
are most intense. It is expected that the positive streamwise 
velocity fluctuations observed over the cavity represent high 
speed streaky structures of the incoming turbulent boundary 
layer. Considering that the Kelvin-Helmholtz instability 
arises when the velocity difference between shear layers  
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Figure 8: Frequency spectra of pressure fluctuations 

when the cavity length increases. 
 
 
exceeds a certain level, it is natural that the high speed 
streaky structures can make the separated shear layer locally 
unstable due to the large velocity difference. Visualization 
of snapshots of the flow supports the notion that the high 
speed streaky structures of the incoming turbulent boundary 
layer play a significant role in the generation of the 
observed intermittent pressure fluctuations. Figure 7(a) 
displays a snapshot of the high speed streaky structures 
(represented by showing only contours with u′' ≥ 0.18U∝) in 
the plane y/D =1, while Fig. 7(b) shows a contour plot of the 
pressure fluctuations in the same plane. In Figure 7(b), the 
solid and dotted lines represent positive and negative 
pressure fluctuations, respectively. Comparison of Figures 
7(a) and (b) shows a strong correlation between the high 
speed streaky structures and the regions of positive and 
negative pressure fluctuations, consistent with the high 
speed streaky structures passing over the cavity generating 
the energetic pressure fluctuations with three-dimensionality. 

Figure 8 shows the frequency spectra of pressure 
fluctuations for systems with cavity lengths of L/D =1, 2 
and 4. The pressure fluctuations are obtained at several 
streamwise locations between the leading edge and the 
trailing edge along the lip line of the cavity geometry. Near 
the leading edge (x/D =0.5), all spectra show energetic 
frequencies in the range of 0.15≤ωθ≤0.3 regardless of the 
length-to-depth ratio. In the center of the L/D =1 and 2 
cavities (dotted lines of Figure 8(a) and (b) respectively), 
the energetic frequencies are observed in the same range 
(0.15≤ωθ≤0.3). In the center of the L/D =4 cavity (dotted or 
dashed lines of Figures 8(c)), however, the pressure 
fluctuations show energetic spectra at frequencies less than 
ωθ=0.15. Considering that the large-scale vortical shedding 
of the flow over a backward-facing step takes place in the 
vicinity of ωθ=0.07, as shown in Figure 8(d), large-scale 
vortical structures are likely to begin to form in the shallow 
L/D =4 cavity, but the trailing edge impedes further 
development of those structures. The disrupting influence of 
the trailing edge leads to considerable variation in the large-
scale vortical structures, and well-defined large structures 
are not regularly observed. 

 
 

SPECTRAL CHARACTERISTICS AT RED=12000 
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Figure 9: Frequency spectra and convection velocity of 

pressure fluctuations when ReD =12000. The convection 
velocity (UC ) is contaminated near the leading and trailing 
edges as indicated by dashed lines in (b). 

 
 
As mentioned early, the pressure fluctuations in the ReD 

=12000 system correspond to the ‘high Reynolds number 
regime’, where quasi two-dimensional pressure fluctuations 
are regularly observed and the frequencies of energetic 
fluctuations decrease as the cavity length increases. Figure 
9(a) shows the frequency spectra of pressure fluctuations in 
the ReD =12000 cavity flows with length-to-depth ratios of 
1 and 2. Here the pressure fluctuations are measured at (x/D, 
y/D)=(0.5, 1.0) and the frequency is non-dimensionalized 
using the cavity depth, i.e., ωθ=2πfD/U∞. The peak 
frequency of energetic pressure fluctuations decreases from 
ωpeak=6.2 to 4.5 as the cavity length increases. This decrease 
in energetic frequency with increasing cavity length is very 
similar to the trend observed previously in the frequency of 
self-sustained oscillations in the flow over an open cavity 
with a laminar incoming boundary layer. Gharib & Roshko 
(1987) found that the oscillating frequency of ‘Mode II’ 
decreased from 6 Hz to 4 Hz as the length-to-depth ratio 
increased from 0.65 to 1.05, and that the shear layer 
oscillation shifted to ‘Mode III’ for ratios larger than 1.1. 
The oscillating frequencies of Modes II and III are 
determined by the relation 

N
U
fLL

Cx

==
λ

                              (1) 

where λx is the streamwise wavelength of oscillation, f is the 
oscillating frequency, UC is the convection velocity, and N 
is the number of wavelengths of fundamental frequency 
contained by the cavity length in the Nth mode of oscillation.  

To compare the dependence of energetic frequencies on 
cavity length with the frequency characteristics of self-
sustained oscillations in laminar cavity flows, we calculated 
the local convection velocity (UC) of pressure fluctuations 
from two-point time correlations (Figure 9(b)). Close 
examination of the time correlations indicates that the 
convection velocity is contaminated near the leading and 
trailing edges, as indicated by dashed lines of Figure 9(b). 
In calculating the streamwise averaged convection velocity 
(UCavg), which is needed to compare the peak frequency of 
Figure 9(a) with the oscillating frequency of laminar cavity 
flows, the regions with contaminated convection velocities 
were excluded. The streamwise averaged convection 
velocities are calculated as UCavg =0.475 for L/D =1 and 
UCavg =0.490 for L/D =2. By substituting the convection 
velocities into Equation (1), the peak frequencies of Figure 
20(a) are expressed as fL/UCavg=2.08 (N =2) for L/D =1 and 
fL/UCavg=2.92 (N =3) for L/D =2. These findings indicate 
that the peak frequencies of the ReD =12000 systems with  

 

 

 

 
Figure 10: Instantaneous coherent structures; (a) top-

view of λ2 distribution, (b) side-view of λ2 distribution, (c) 
top-view of λ2 distribution, (d) spanwise-averaged  p′. 

 
 

L/D =1 and 2 correspond to the 2nd and 3rd modes (N =2 
and 3), just like the oscillating frequency of laminar cavity 
flows (Gharib & Roshko 1987). Considering that the N th 
modes of laminar cavity flows are related to the streamwise 
wavelength (λx) of large-scale structures, the observation 
that the peak frequencies at ReD =12000 for L/D = 1 and 2 
correspond to the 2nd and 3rd modes suggests that large-
scale vortical structures are present in turbulent cavity flows. 
Assuming that the streamwise length scale of pressure 
fluctuations is half of 1/λx, the length scale is expected to be 
0.4D near x/D =1.0 when L/D =2. Note that the streamwise 
length scale of pressure fluctuations is about 0.45 D in the 
laminar case of Chang et al. (2006), for which self-sustained 
oscillations are observed. The similarity of streamwise 
length scales supports the existence of large-scale vortical 
structures in turbulent cavity flows. 

Next, to elucidate the large-scale vortical structures 
responsible for the N th modes, we examined instantaneous 
flows for the system with a length-to-depth ratio of 2. 
Figures 10(a) and (b) show a top-view and side-view of the 
instantaneous coherent structures identified using the λ2 
criterion. Identification using the λ2 criterion shows only 
small vortical structures because λ2 is calculated from the 
velocity gradient tensor. Nevertheless, the top view of λ2 
(Figure 10(a)) shows a slight clustering of small vortical 
structures near x/D =0.8 and in the vicinity of the trailing 
edge. The side view of λ2 (Figure 10(b)) shows the 
development of the shear layer, but fails to distinguish the 
large-scale vortical structures from the shear layer. 
Compared to the λ2 criterion, instantaneous pressure 
fluctuations are better for depicting large-scale vortical 
structures. As seen in Figure 10(c), quasi two-dimensional 
vortical structures are observed near x/D = 0.8 and in the 
vicinity of the trailing edge. In the region immediately 
downstream of the leading edge, another vortical structure is  
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Figure 11: Time history and sequential patterns of 

spanwise averaged pressure fluctuations. Here <p′>  
represents spanwise averaged pressure fluctuations. Times 
of (a) ~ (e) are 2.625, 3.0, 3.375, 3.75, 4.125. 

 
 

likely to be initiated. The large structures are more clearly 
observed in the contour plot of spanwise-averaged pressure 
fluctuations shown in Figure 10(d). Figure 11 shows the 
time history and sequential patterns of the spanwise-
averaged pressure fluctuations. The time history records the 
spanwise-averaged pressure fluctuations measured at (x/D, 
y/D) =(1.0, 1.0). The pressure fluctuations show quasi-
periodic oscillations in the range of 1.4≤Δt ≤1.7, where Δt is 
the time interval between consecutive large-scale structures. 
The peak frequency (ωpeak=4.5) of the energy spectra is in 
good agreement with the range of the time interval. The 
sequence of contour plots in Figures 11(a)~(e) show the 
convective patterns of the large-scale vortical structures. 

 
 

CONCLUSION 
When the turbulent boundary layer approached the 

leading edge in cavity flows with ReD =600 and 3000, the 
energy spectra of pressure fluctuations showed energetic 
frequencies in the range of 0.15≤ωθ≤0.3. Examination of 
conditionally averaged flow fields revealed that high speed 
streaky structures in the incoming turbulent boundary layer 
made the separated shear layer locally unstable and 
generated the pressure fluctuations with the energetic 
frequencies. The same energetic frequencies were observed 
in the flow over a backward-facing step as well as in deep 
and shallow cavity flows because the high speed streaky 
structures remained undisturbed in the region immediately 
downstream of the leading edge. Considering that self-
sustained oscillations are meaningful only when the 
oscillations arise from a geometric peculiarity of the cavity, 
neither the energetic pressure fluctuations generated by the 
high speed streaky structures nor the irregular shedding of 
large-scale vortical structures are regarded as self-sustained 
oscillations in the incompressible turbulent flow over an 
open cavity. 

In the turbulent cavity flow with ReD=12000, the peak 
frequencies of the energy spectra at cavity lengths of L/D = 
1 and 2 were found to correspond to the N th modes with N 
= 2 and 3 respectively. The observed N th modes were very 
similar to the frequency characteristics of self-sustained 
oscillations reported previously for laminar cavity flows. 

While the vortex identification revealed a slight clustering 
of small vortical structures in the vicinity of the large-scale 
vortical structures, inspection of the instantaneous pressure 
fluctuations as well as spanwise-averaged pressure 
fluctuations made it clear that regular shedding of quasi 
two-dimensional vortical structures was responsible for the 
peak frequency in the energy spectra. When the large-scale 
vortical structure impinged on the trailing edge, the 
structure split into a small part entrained into the cavity 
along the vertical wall and a large part that was ejected out 
of the cavity. The characteristics revealed in the present 
work, particularly the regular shedding and impinging of 
large-scale vortical structures, strongly suggest that a fully 
turbulent boundary layer can give rise to self-sustained 
oscillations in an incompressible turbulent flow over an 
open cavity. 
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