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4 place Jussieu, bôıte 162, F-75252 Paris cedex 5, France
larchevq@lmm.jussieu.fr

ABSTRACT

A new family of criteria built on geometrical consid-

erations to educe coherent structures in turbulent flow

is proposed and validated using analytic and DNS three-

dimensional flowfields. The ability of these criteria to educe

regions of specific dynamical behavior is also demonstrated.

INTRODUCTION

In the recent years a large number of methods have been

proposed to educe vortical structures with application to

the visualization and the study of turbulent coherent struc-

tures. Among these methods the Q criterion by Hunt et

al. (1988), the λ2 criterion by Jeong and Hussain (1995) and

to a lesser extent the ∆ criterion by Chong et al. (1990) are

the most popular. It is worth noting that most of methods,

although resulting in distinct definitions of a vortex core for

three-dimensional flowfields, boil down for incompressible

two-dimensional flows to the single Weiss (1991) criterion.

On the contrary, the two-dimensional criterion defined by

Herbert et al. (1996), based on the curvature of isovortic-

ity lines, yields more precise dynamical results and educes

much thinner structures. Note nonetheless that the same ge-

ometrical considerations applied to streamlines rather than

isovorticity lines results in the Weiss criterion.

The purpose of the present work is to extend the former

two-dimensional definition of Herbert et al. (1996) to three-

dimensional flows.

MATHEMATICAL FORMULATION

Local analysis of the isosurface properties

The basic idea of this section is to define an educing

method based on the geometrical properties of some iso-

surfaces of a carefully selected quantity. It is therefore

implicitly assumed that these properties are induced by the

local dynamics of the flow. Only a single scalar quantity is

considered and the resulting educing scheme does not rely

on any arbitrary threshold so as to be “objective”.

The structure of interest are generally the ones associated

with high levels of the selected quantity, although it is obvi-

ous that derivations similar to the ones described hereafter

could be applied to structure of low levels. For turbulent

flows, the more natural choice, in the first step, is to seek

for structures of high vorticity.

At each location M0 in the flow the local second order ap-

proximation SM0 of the isovorticity surface associated with

M0 is considered. Consequently the surface SM0 is implicitly

defined by:

‖ω‖
|M

− ‖ω‖
|M0

= MM0 .∇
(

‖ω‖
|M0

)

+
1

2
MM0

T H(‖ω‖)
|M0

MM0

= 0 (1)

The Hessian matrix H(‖ω‖) of the vorticity norm ω = ‖ω‖
is defined by

Hij(ω) =
∂2ω

∂xi ∂xj
(2)

Since H(ω) is symmetric, its eigenvalues λ1 ≤ λ2 ≤ λ3

are purely real and the associated eigenvectors
(

e1, e2, e3

)

form an orthogonal basis. Thus the local behavior up to

the second order is fully determined by
(

λi, ei

)

i=1,2,3
and

a set of three scalars a, b, c related to the projection of the

gradient of ω on the basis
(

e1, e2, e3

)

:

∇(ω)
|M0

= a e1 + be2 + c e3 (3)

Equation 1 can then be rewritten in the local Euclidean

frame
(

M0, e1, e2, e3

)

as:

a X + b Y + c Z +
1

2

(

λ1 X2 + λ2 Y 2 + λ3 Z2
)

= 0 (4)

with MM0 = X e1 + Y e2 + Z e3. Eventually, when

λ1 λ2 λ3 6= 0, Eq. 4 can be equivalently recast in:

λ1

(

X +
a

λ1

)2

+ λ2

(

Y +
b

λ2

)2

+ λ3

(

Z +
c

λ3

)2

= K

(5)

with K defined by:

K =
a2

λ1
+

b2

λ2
+

c2

λ3
(6)

The surface SM0 is a quadric of principal axes
(

e1, e2, e3

)

and the location of its center C is given by:

M0C = −
a

λ1
e1 −

b

λ2
e2 −

c

λ3
e3 (7)

Note that K can be rewritten using Eq. 7 as:

K = −M0C .∇(ω)
|M0

(8)
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The positive orientation for SM0 is set accordingly to

∇(ω), ensuring that at least one of the principal curvatures

at location M0 is positive when SM0 is close to a maxi-

mum. Using this convention, the mean curvature H of SM0

at location M0, defined as the half-sum of the two principal

curvatures κ1(M0) and κ2(M0), reads:

H =
−a2 (λ2 + λ3) − b2 (λ1 + λ3) − c2 (λ1 + λ2)

2 (a2 + b2 + c2)
3
2

(9)

Equation 9 can be rewritten in a frame-independent form

that does not require the explicit computation of the eigen-

values:

H =

∇(ω) T
|M0

H(ω)
|M0

∇(ω)
|M0

−Tr

(
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∥

∥
∇(ω)

|M0

∥

∥

∥

2

2

∥

∥

∥
∇(ω)

|M0

∥

∥

∥

3

(10)

Similarly, information contained in the eigenvalues can be

recovered by considering the three main invariants of the

Hessian matrix:

I1 = λ1 + λ2 + λ3 = Tr

(

H(ω)
|M0

)

(11)

I2 = λ1 λ2 + λ1 λ3 + λ2 λ3

=
1

2

{

[

Tr

(

H(ω)
|M0

)]2

− Tr

(

H(ω) 2
|M0

)

}

(12)

I3 = λ1 λ2 λ3 = det

(

H(ω)
|M0

)

(13)

Noteworthily, some analytical properties can be derived

from the sign of the invariants:

I2 ≥ 0 ⇒ H ≥ 0 (14)

I1 < 0 ⇒ ω.∇2(ω) < 0 (15)

Structure definitions

The eigenvalues λi or, equivalently, the invariants Ii can

be used to build a geometrical classification among struc-

tures. For instance, the isosurface of ω can be approximated

by an ellipsoid in the vicinity of locations where three neg-

ative eigenvalues are encountered. Consequently regions

exhibiting three negative eigenvalues are associated with

pancake-shaped vortical structures. This condition can be

recast using the three main invariants, resulting in the defini-

tion of the Hp
ω criterion designed to educe pancake according

to the following constraints:

Hp
ω : I1 < 0 I2 > 0 I3 < 0 (16)

Note that beyond geometrical considerations, regions educed

using the Hp
ω criterion are also associated with a local max-

imum of ω.

Next the Burgers vortex and Burgers vortex layer are

analyzed in order to refine the study of the invariants on a

physical basis. These two analytical flowfields are solutions

of the three-dimensional incompressible Navier–Stokes equa-

tions that correspond to an equilibrium between a Gaussian

vortex and a transverse straining field. The vorticity field is

one-dimensional and its norm reads:

ωBV =
αΓ

4πν
exp

[

−
α

(

x2
1 + x2

2

)

4ν

]

(17)

ωBVS =
Γ

√
2π

√

α

ν
exp

(

−
α x2

2

2ν

)

(18)
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Figure 1: Profiles of ∆ (−−−−−), Q (− − −), λ2 (· · · · · ·),
I
H(ω)
1 (−−◦−−) and I

H(ω)
2 (−−•−−) for Burgers’ vortices with

(a) ReΓ = 1 and (b) ReΓ = 100.

respectively for Burgers’ vortex and vortex layer, with Γ

being the total circulation, α being the parameter controlling

the strain and ν being the kinematic viscosity.

By enforcing I1 < 0, the classical definition of the vor-

ticity core radius r∗ = 2
√

ν/α of the Burgers vortex is

recovered whatever the ReΓ = Γ/ (4πν) is, as seen in Fig. 1.

It implies that I1 is insensitive to the transverse strain, as

well as I2, (again see Fig. 1) while I3 is identically equal to

zero. The ∆ criterion also shares this property although the

radius of the region educed by this criterion is slightly larger

than r∗, the cancellation point of ∆ corresponding to the

maximal radial velocity. On the contrary Q and λ2 criteria

educe vortices only for values of ReΓ respectively higher than√
3 and 1. The radii of the educed region rise jointly with

the value of ReΓ and the same radius as for the ∆ criterion

is recovered within the limit ReΓ → ∞.

The I1 < 0 constraint also yields the eduction of the

Burgers vortex layer with the expected thickness δ =
√

α/ν.

The difference with the others criteria is in this case more

striking since ∆, Q and λ2 lead to the exclusion of the whole

sheet. Nonetheless, it is worth noting that Burgers’ vortex

layer does not meet constraints of Eq. 16 associated with the

Hp
ω criterion for pancake eduction since both I2 and I3 are

uniformly equal to zero for this flowfield.

The change in the sign of I1 resulting in the correct

definition of the characteristic lengths for both Burgers’ flow-

fields, it is therefore assumed that I1 < 0 is a necessary

condition in the present definition of a vortical structure.

Apart of the pancake shape, vortical structures can be

mainly classified into tubes or sheets. Such structures can

be modeled in space as hyperboloids corresponding to one

positive and two negative eigenvalues. In the invariant space,

this condition reads (I1 < 0, I3 ≥ 0).

The discrimination between tubes and sheet is carried

out on the basis of their slenderness by means of the I2
invariant: a positive value of I2 ensures that the hyperbolic

positive eigenvalue is low enough compared with the two

elliptic negative ones according to the inequality:

I2 > 0 ⇔ λ3 <
λ1 λ2

|λ1 + λ2|
(19)

Geometrically speaking, such a condition on I2 results in a

slender hyperboloid. The Ht
ω criterion designed for educing
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Table 1: Definitions of the members of the Hxx
ω family ac-

cording to the sign of the invariants of H(ω), Q and the mean

curvature of the isovorticity surface H.

Hp
ω Ht

ω H
rsQ
ω H

psQ
ω H

rsH
ω H

ps
H

ω

I1 < 0 < 0 < 0 < 0 < 0 < 0

I2 > 0 > 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0

I3 < 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Q > 0 ≤ 0

H > 0 ≤ 0

tubular vortices is therefore defined as:

Ht
ω : I1 < 0 I2 > 0 I3 ≥ 0 (20)

Note that for Burgers’ vortex the Ht
ω criterion educes a

smaller region that the one corresponding to the single condi-

tion I1 < 0 since the cancellation radius of I2 is r0 = r∗ /
√

2.

This location also corresponds to the inflexion point of the ω

profile. Regarding the Burgers vortex layer, the Ht
ω criterion

excludes it entirely since I2 = 0 for that flow.

Complementary to tubes, sheets are educed in regions

where the following constraints are met:

I1 < 0 I2 ≤ 0 I3 ≥ 0 (21)

Another subdivision between layers located close to a

vortex core and plane sheets is nonetheless desirable since it

is generally acknowledged that these two kinds of layers have

distinct dynamical behaviors. Such a splitting appears to be

difficult to obtain if based solely on the three invariants of

H(ω). It can nonetheless be achieved by taking into account

other considerations.

It has been seen previously that the Q criterion excludes

the whole Burgers vortex layer while it educes Burgers’ vor-

tex at least for sufficiently high Reynolds numbers. There-

fore rotational / plane sheets could be discriminated by seek-

ing for positive / negative values of Q. The criteria standing

for the rotational and plane sheets by taking into account

both the constraints of Eq. 21 and the Q splitting are here-

after referred to as H
rsQ
ω and H

psQ
ω .

Such a splitting may have a direct physical significance

since negative values of Q are associated with regions where

the strain rate dominates the rotation rate and therefore pre-

sumably regions exhibiting rather high local levels of kinetic

energy dissipation. Consequently the plane sheets educed by

H
psQ
ω may match the dissipative sheets surrounding vortex

cores highlighted by some authors (see for instance Horiuti,

2001). However one may note that this splitting is intrinsi-

cally specific to the study of vortical structures, regardless

of other scalar quantities. Moreover H
rsQ
ω and H

psQ
ω crite-

ria are no longer ReΓ-independent when applied to Burgers’

vortex because of the Q dependency on the transverse strain.

Another splitting, more general and fully independent

of ReΓ, can be obtained by considering the mean curvature

H. For the Burgers vortex, Eq. 21 yields the eduction of

the region r∗ /
√

2 < r < r∗ surrounding the core. The

mean curvature H = (2 r)−1 is strictly positive over this re-

gion while it is equal to zero when considering the Burgers

vortex layer. Consequently, rotational / plane sheets are re-

spectively associated with strictly positive / negative value

of H. Coupling this condition with Eq. 21 leads to the defi-

nition of the H
rsH
ω and H

ps
H

ω criteria.

By taking into account these refinements related to vor-

tical sheets, the whole family of the Hxx
ω criteria can be

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Structures educed from the ABC flow defined in

Eq. 22 using various criteria: (a) Q, (b) Hω , (c) Hp
ω , (d) Ht

ω ,

(e) H
rsQ
ω , (f) H

psQ
ω , (g) H

rsH
ω and (h) H

ps
H

ω .

summed up according to Tab. 1. Note that the implic-

itly defined criterion resulting in the eduction of the regions

matching the union of all the regions educed by any of the

Hxx
ω criteria will be referred to as Hω .

TEST CASES

ABC flow

The ABC flowfields are 2π-periodic solutions of the

three-dimensional Euler equations defined by :

{

u1 = A sin (x3) + C cos (x2)

u2 = B sin (x1) + A cos (x3)

u3 = C sin (x2) + B cos (x1)

(22)

with A =
√

3, B =
√

2 and C = 1 resulting in chaotic

streamlines. The analysis of such a flowfield in term of vor-
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tex dynamics is rather meaningless because of the equality

between velocity and vorticity fields. However it is useful to

check the ability of the Hxx
ω criteria to discriminate between

structures on a geometrical basis.

The regions educed by the Q and Hω criteria are plotted

in Fig. 2 (a) and (b). Is is seen from these plots that the

Hω criterion yields a slightly larger educed region than Q

but with the same global shaping. The region related to

the various subdivisions of the Hω are plotted in Fig. 2 (c)

to (h). The expected geometrical shapes are recovered for

both Hp
ω (Fig. 2 c) and Ht

ω (Fig. 2 d) criteria. Figures 2 (e) to

(h) demonstrate that the use of I2 to discriminate between

tubes and vortex layers effectively results in educing layers

located around the tubes. Lastly it is seen from Figs. 2 (e-f)

and (g-h) that the separation between rotational layers and

plane sheets either based on Q or H leads to similar educed

region with sheets located outside of rotational layers.

Direct numerical simulation

Isotropic turbulence. Two instantaneous fields coming

from DNS computations with a spectral resolution of 2563

are used in this section to analyze the flow dynamics by con-

ditional averaging over regions educed using various criteria.

The first snapshot is related to a Reλ ≃ 150 computation of

forced isotropic turbulence by Vincent and Meneguzzi (1991)

and the second one corresponds to a freely decaying turbu-

lence with Reλ ≃ 50, coming from computations by Liecht-

enstein et al. (2005).

Quantities analyzed are the educed volume, the turbu-

lent kinetic energy and its dissipation rate, the enstrophy,

the budget terms of the enstrophy equation and the ratio

〈Ω2〉/〈S2〉. Results for Hω , ∆, Q and λ2 regions are dis-

played in Tab. 2 both as a percentage of the total mean quan-

tities and as a “density” (quantity contains in the educed

volume divided by this volume), normalized by the overall

density.

The Hω , Q and λ2 criteria yield the eduction of a sim-

ilar percentage of the total volume over which there is no

noticeable variation in the turbulent kinetic energy density

compared to the overall value, as seen in the first three lines

of Tab. 2. On the contrary, Hω results in educing regions

with a dissipation rate above the average and well above

the ones seen on Q, λ2 or even ∆ regions. Such a behavior

could be related to the highlighting of the small scales by

the Hω criterion that results from the wavenumber scaling

of H(ω) invariants in concordance with a power of the third

derivative of the velocity field. As a matter of fact, it can

be checked by computing spectra of the quantities involved

in the definition of the criteria that both Q and λ2 variables

yield similar spectra whose high wavenumber relative frac-

tion is lower that the one of ∆ spectrum and far lower than

the ones found for I1, I2 and I3 spectra.

Focusing on the enstrophy, it is found that all criteria, as

expected, educe regions of high levels compared to the av-

erage one. However the dynamics of the enstrophy, revealed

by analyzing the terms of its transport equation, differs no-

ticeably from one educed region to another. The Hω regions

exhibit a high level of “production” related to the vortex

stretching, a low level of dissipation, a high level for the

sum of dissipation and diffusion and consequently a very

high level of diffusion while the other criteria overall educe

regions of rather large production, average dissipation and

high diffusion. It is worth noting that the large density for

the sum of the diffusion and dissipation of enstrophy found

Table 2: Percentage of the total value and density normal-

ized by the mean density in regions educed using the Hω ,

∆, Q and λ2 criteria for isotropic turbulence, either freely

decaying with Reλ ≃ 50 or forced with Reλ ≃ 150. The

quantities studied are respectively the volume V, the turbu-

lent kinetic energy k = 1
2
〈ui ui〉, the dissipation rate of k,

ǫ = ν 〈Sij Sij〉, the enstrophy 〈ω2〉 = 〈Ωij Ωij〉, the “produc-

tion” rate of enstrophy P(ω2)= 〈ωi ωj Sij〉, the dissipation

rate of enstrophy d(ω2)= ν〈ωi,j ωi,j〉, the sum of dissipa-

tion and diffusion rates of enstrophy D(ω2)= ν〈ωi ωi,jj〉,
the vortex stretching rate V. S.R. = 〈ωi ωj Sij / (ωi ωi)〉and

the ratio between the main rotation and strain rates

〈ΩijΩij〉/〈SijSij〉 with Sij = 0.5 (∂ui/∂xj + ∂uj/∂xi) and

Ωij = 0.5 (∂ui/∂xj − ∂uj/∂xi). The operator 〈·〉 denotes a

conditional averaging over the educed volumes.

Hω ∆ Q λ2

V 42–44% 62–70% 39–42% 39–43%

k 41–43% 62–70% 39–41% 38–42%
096–0.98 0.98–0.99 0.96–0.98 0.97–0.99

ǫ 48–49% 52–62% 31–34% 29–35%
1.09–1.18 0.83–0.89 0.75–0.82 0.72–0.81

ω2 63–69% 85–87% 69–72% 69–70%
1.51–1.55 1.24–1.36 1.66–1.82 1.61–1.78

P(ω2) 69–76% 73–75% 58–59% 52–53%
1.66-1.72 1.14–1.18 1.42–1.49 1.27–1.34

d(ω2) 34–38% 62–71% 41–44% 39–44%
0.82–0.85 0.99–1.01 1.0–1.01 1.02–1.05

D(ω2) 84–88% 79–84% 65–68% 61–66%
1.89–2.08 1.2–1.27 1.56–1.65 1.56–1.68

V. S. R. 53–56% 45–48% 29–33% 25–32%
1.25–1.28 0.72–0.73 0.74–0.79 0.63–0.75

〈Ω2
〉/〈S2

〉 1.28–1.42 1.39–1.57 2.02–2.31 2.0–2.36

in Hω regions is a consequence of relation 15 which states

that this sum is negative everywhere in regions where I1 < 0.

Interestingly, the study of the vortex stretching rate

(penultimate line of Tab. 2) demonstrates that the high level

of production in the Hω regions is strongly induced by the

vortex stretching process while in regions corresponding to

the other criteria the above-average level is rather related

to an preexistent high level of enstrophy. The large vortex

stretching rate is also a sign that the Hω regions are signifi-

cantly involved in the turbulent cascade process.

Also note that the ratio of the conditionally averaged Ω2

and S2 is found to be about 1.3 in Hω regions. Such a value

is lower than for the other criteria but well above the overall

average value of 1, as expected for a criterion designed to

educe vortical structures.

Lastly, an indirect assessment of the coherent nature of

the structures educed by means of the Hω criterion is ob-

tained. When applying this criterion to a coherent field

resulting from a wavelet decomposition of the Reλ = 150

computation (see Roussel et al., 2005, for details) and then

when conditionally averaging the quantities computed from

the total (coherent+incoherent) flowfield in the educed re-

gions, results almost identical to those of Tab. 2 are found.

Since the Hω regions exhibit rather different dynamics

than their ∆, Q, and λ2 counterparts, it is of interest to con-

sider the overlapping of two regions educed using different

criteria. The first line of Tab. 3 shows that more than 50 %

of the Hω educed volume are shared with volume educed

by one of the other criteria. Other lines demonstrate that,

when both criteria educe regions exhibiting the same trend,

this one is reinforced in the intersecting regions compared
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Table 3: Percentages of volume of the Hω region also meet-

ing another criterion and density of various quantities in the

intersecting region. Results are compiled from isotropic tur-

bulence, either freely decaying with Reλ ≃ 50 or forced with

Reλ ≃ 150. See Tab. 2 for definitions.

∆ Q λ2

V 73–80% 54–59% 52–58%

k 0.96–0.98 0.96–0.98 0.96–0.98

ǫ 0.94–1.07 0.86–1.0 0.83–0.99

〈ω2〉 1.71–1.85 2.1–2.25 2.06–2.23

P(ω2) 1.78–1.86 1.98–2.13 1.82–1.97

d(ω2) 0.89–0.90 0.96–1.0 0.94–0.98

D(ω2) 2.09–2.32 2.38–2.68 2.34–2.61

V. S. R. 1.0–1.04 0.93–0.95 0.83–0.86

Table 4: Percentage of the total value and density normal-

ized by the mean density in regions educed using the Hp
ω,

Ht
ω, H

rsH
ω and H

ps
H

ω criteria for isotropic turbulence either

freely decaying with Reλ ≃ 50 or forced with Reλ ≃ 150.

See Tab. 2 for definitions.

Hp
ω Ht

ω H
rsH
ω H

ps
H

ω

V 6–7% 11–12% 20–21% 4–5%

k 6–7% 11–12% 20–21% 4–5%
0.95–1.0 0.96–0.99 0.95–0.98 0.95–0.98

ǫ 7–8% 13–14% 21–23% 5%
1.09–1.39 1.11–1.33 1.04–1.07 1.07–1.1

ω2 13–15% 20–23% 25–26% 5–6%
2.17–2.23 1.88–1.93 1.21–1.23 1.10–1.12

P(ω2) 16–17% 26–27% 24–27% 5–6%
2.57-2.85 2.25–2.34 1.2–1.26 1.2

d(ω2) 6% 10% 15–18% 3%
0.90–1.05 0.87–0.92 0.77–0.84 0.67–0.72

D(ω2) 20–22% 31–33% 28–29% 4–6%
3.14–3.71 2.5–2.9 1.33–1.4 1.02–1.11

V. S. R. 9% 16–17% 22–25% 5–6%
1.37–1.51 1.38–1.43 1.09–1.19 1.16–1.18

〈Ω2
〉/〈S2

〉 1.56–2.06 1.41–1.72 1.14–1.18 1.02–1.04

to each of the individual region. When trends differ, there

is globally a cancellation effect. These facts clearly demon-

strate that the Hω criterion is complementary to the family

of the three other ones.

The pertinency of the Hω criterion being established, the

characteristics seen in each of the regions educed by its sub-

components have to be analyzed. The results of this analysis

are displayed in Tab. 4. One has to specify that only the

splitting of the vortex layer based on the mean curvature H
(H

rsH
ω and H

ps
H

ω criteria) has been retained. As a matter

of fact the discrimination of the layer relying on Q results

in difference in dynamics almost identical to those seen in

the whole regions where Q is positive/negative. Their dy-

namics being fully driven by Q, the regions educed using

the H
rsQ
ω /H

psQ
ω criteria appear to be of little interest in the

context of the present work.

The H
rsH
ω criterion is the one yielding the eduction of

the largest volume, with about twice the volume educed by

the Ht
ω criterion and respectively three and four times the

volumes educed by the Hp
ω and H

ps
H

ω criteria. Overall, the

trends seen when analyzing the global Hω criterion are ex-

acerbated when going from the H
ps

H

ω criterion to the H
rsH
ω

criterion and then the Ht
ω and Hp

ω ones, with the excep-

tion of the dissipation of enstrophy for which the ordering

is inverted. It therefore demonstrates that the geometrical

subdivisions of the Hω criterion is meaningful when studying

the dynamics of the vortical structures.

One may nonetheless note that for the dissipation of ki-

netic energy and the vortex stretching rate, the dividing line

is rather found between the union of pancake-shaped and

tubular regions on the one hand and both kinds of vortex

layer on the other hand. The roughly same level of enstro-

phy production is also found inside the two kinds of layers.

It also seems that there is a global Reynolds number effect

on both the dissipation of kinetic energy and the enstrophy

densities in the four sub-regions, although the low number

of analyzed flowfields prevents of affirmative conclusions.

Lastly, it is worth noting that when using one of the ∆,

Q, λ2 criteria with a threshold different to zero such as to

obtain the same low volume percentage as for the Hp
ω cri-

terion, density levels of dissipation of the turbulent energy,

of enstrophy, of its production and of the sum of its dissipa-

tion and its diffusion are found higher in these regions than

in the Hp
ω ones. However densities of vortex stretching rate

and dissipation of enstrophy remain by far respectively lower

and higher than in the Hp
ω regions. This fact confirms the

complementarity of the both family of criteria.

Homogeneous turbulence. Two kinds of decaying homo-

geneous turbulent flowfields are tested complementary to the

isotropic case in order to check the ability of the Hxx
ω criteria

to educe regions with specific geometrical characteristics in

real flows. The turbulence is respectively vertically strat-

ified or in rotation around the vertical axis, as described

in Liechtenstein et al. (2005). Note that both computations

correspond to a decay time similar to the one found in the

isotropic computation previously analyzed.

Due to their small-scale nature, the Hxx
ω criteria are not

well-suited for visualization of a turbulent flow, especially for

the Ht
ω and H

rsH
ω ones that result in the eduction of a rather

large fraction of the flow. Meaningful pictures can nonethe-

less be obtained be seeking for singly-connected structures

and by displaying the largest ones only. Since for Ht
ω the

largest structure is huge and visually fill the entire volume,

it has been discarded. Such a trick does not work for H
rsH
ω

and therefore no plot have been dedicated to this criterion.

For isotropic turbulence, the Hp
ω criterion educed lines of

small pancakes mainly constricted in the inner core of strong

vortices, as identified by using the Q criterion with a high

threshold. It therefore explains the tubular shapes seen in

the left part of Fig. 3. The Ht
ω criterion (right part of the

figure) also educes tubular regions but of less slenderness

and being much more interleaved. Left parts of Figs 3 (b-c)

highlight more clearly the expected pancake shape obtains

for regions educed by the Hp
ω criterion with an orientation

selected by the specific physics of the flow. Geometrical

expectation are also met for the Ht
ω criterion.

The plots of Fig. 4 dedicated to the regions educed us-

ing the H
ps

H

ω criterion are more difficult to analyze. It can

nonetheless be seen that, at least for non-isotropic flows, the

sheet regions effectively exhibit flattened vortical structures,

mostly surrounding pancakes or tubular regions.

Lastly, it may be noted that for the non-isotropic

flows the hierarchy of structure types in term of increas-

ing/decreasing densities is for some quantities altered in

non-trivial ways compared with the one found for isotropic

flows, although more flowfields are needed to trustfully con-

firm that point.
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(a)

(b)

(c)

Figure 3: Visualization of the 100 largest structures educed

according to the Hp
ω (left) and Ht

ω (right) criteria from freely

decaying (a) isotropic, (b) stratified and (c) rotating homo-

geneous turbulent flowfields. Note that for the Ht
ω plots

the largest structure has been discarded because of its wide

spatial extension making it unsuitable for visualization.

(a) (b)

(c)

Figure 4: Visualization of the 100 largest structures

educed according to the H
ps

H

ω criterion from freely decay-

ing (a) isotropic, (b) stratified and (c) rotating turbulent

flowfield.

CONCLUSION

A new family of geometric criteria designed to educe tur-

bulent structures has been defined. These criteria allow a

clear splitting of vortical structures into pancakes, tubes,

rotational layers and sheets when the vorticity magnitude

is considered. Moreover they do not involve the use of any

threshold.

The structures thus highlighted exhibit a high level of

enstrophy, enstrophy production, vortex stretching rate and

enstrophy diffusion but a low level of enstrophy dissipation.

Therefore these structures can be seen as small-scale enstro-

phy sources.

Because of their small-scale nature, the Hxx
ω criteria are

not well-suited for visualization of turbulent flows. However,

because their definitions is free from arbitrary threshold,

they could be used to objectively analyze the local temporal

evolution of vortical structures and their dynamics in time-

dependant flows such as decaying turbulence.

It is also worth noting that these kinematic criteria sat-

isfy the Galilean invariance and can be applied to any scalar

quantity α as long as it is Galilean invariant. They can

for instance be used with α = Q or α = λ2 to objectively

seek for strong vortical structures among the Q / λ2 regions

without using arbitrary thresholds.

No explicit knowledge of the eigenvalues of the Hessian

matrix of α is required since quantities involved are tenso-

rial invariants and can be evaluated in any Euclidean frame.

However note that in the present case high-order or spectral

schemes are mandatory for computing the invariants since

they involved the use of second derivatives of the vorticity.
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