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ABSTRACT

The Lagrangian evolution of passive material lines in a

turbulent channel flow is studied through direct numerical

simulation (DNS). A series of DNS has been performed for

the friction Reynolds number of Reτ = 80–395 with vari-

ous initial condition of lines. The present study reveals that

fine-scale phenomenon, in particular the near-wall coherent

structure, makes a significant contribution to the turbulent

mixing. The line stretching rate, normalized by the local

Kolmogorov time, is less dependent on the height nor the

Reynolds number except the one in the wall vicinity . It is

shown qualitatively by visualization of a cross-sectional flow

that a streamwise vortex and a bursting process cause the

intensive stretching and the anisotropy of the line deforma-

tion.

INTRODUCTION

An important feature of turbulence is its ability to trans-

port and mix fluid effectively. Evolutions of material objects

in turbulence are of intrinsic interest, and their stretching

properties reflect a high potential of mixing by turbulence.

A material object is defined as any line, surface or volume

that always consists of the same material points or fluid

particles. The stretching and the deformation of a material

line by turbulence provide important consequences, such as,

stretching of a vortex line in an inviscid fluid, and a motion of

a polymer as drag-reducing surfactant. Constant-property

surfaces of temperature or of other passive scalars are ma-

terial surfaces in case of the negligible molecular diffusivity

compared to the turbulent mixing. Hence, passive mate-

rial objects have been extensively studied by a number of

authors as one of the most fundamental topics. Their defor-

mation is of practical importance in flows accompanied by

diffusion of chemical reactants in the turbulence combustion

or of pollutant in the environment.

Batchelor (1952) was the first to simplify the analysis

of the finite-sized lines and surfaces to that of infinitesimal

elements in his study of the homogeneous isotropic turbu-

lence. It has been theoretically and numerically confirmed

by Goto & Kida (2003), and by references therein, that the

total length L(t) of a material line increases exponentially in

time. Recently, the evolution of infinitesimal material line

has been investigated experimentally by Guala et al. (2006)

with a focus on the effect of vorticity and strain. The stretch-
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ing rate, if normalized by the Kolmogorov time τη,

γ ≡ d

dt
logL(t)

“

* L(t) = L0 exp(γt)
”

(1)

is found to be independent of the Reynolds number Re. This

supports the conjecture that small-scale elementary vortices

contribute to exponential evolution in material objects. On

the other hand, it is emphasized in Goto & Kida (2003)

that a correct stretching rate cannot be obtained correctly

by random selection of line elements in the flow volume (the

Batchelor’s assumption). This implies that material-line

elements can never be statistically equivalent even in the

homogeneous turbulence. Moreover, Goto & Kida (2005)

reported that the stretching rate of the finite-sized material

line in the homogeneous turbulence depends on Re; i.e., it is

larger at a higher Re. This dependence is caused by the com-

bined effect of various-scale eddies; the folding of a material

line by large eddies and the stretching by small eddies.

Much attention was paid to the material line (or line ele-

ment) in the homogeneous isotropic turbulence as mentioned

above. To the authors’ knowledge, no study to date has been

done to verify the exponential stretching of a material line in

a wall-bounded shear flow. We are interested, in particular,

in the relationship between the stretching of the material

line and coherent structures near a wall. In the wall turbu-

lence, the scale of vortical structures is known to range over

several orders from the near-wall fine-scale structure to the

large-scale one in the outer region, cf. Robinson (1991). In

recent years, the direct numerical simulation (DNS) of the

turbulent channel flow, which is a canonical case in the wall

turbulence, has become an important research tool in study-

ing the physics of the turbulent structure. However, the

influence of the multi-scale eddies and the near-wall viscous

effect on the material-line evolution are not yet understood.

The objective of this work is to perform the simulation of

the material line released in the channel flow through DNS,

and to examine the physical mechanism of strong mixing and

of stretching of material objects in the wall turbulence. The

visualizations reveal clearly that the stretching depends on

its initial condition, i.e. direction and height from the wall,

in addition to the Reynolds number. This paper deals with

the performance of the numerical simulation and obtained

statistics such as the stretching rate and the fractal dimen-

sion, with emphasis on these parameters.

NUMERICAL PROCEDURE

The Lagrangian velocity data of a material object are

obtained from DNS of a fully-developed turbulent channel

flow, as given in Fig. 1. The mean flow is driven by the

uniform pressure gradient in the x direction. The periodic
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Table 1: Numerical parameters of DNS and Eulerian statistics: Reτ=(uτ δ/ν), Reynolds number; Li, computational domain

size; Ni, number of grids points; ∆i, spatial resolution; ∆t, time step; ∆L, threshold length of line segment; η, local Kolmogorov

length; τη, of local Kolmogorov time.

Reτ Lx × Ly × Lz Nx × Ny × Nz ∆x+ ∆y+
min–∆y+

max ∆z+ ∆t+ ∆+
L η+

min–η+
max τη

+
min–τη

+
max

80 12.8δ × 2δ × 6.4δ 256 × 96 × 256 4.00 0.111–3.59 2.00 0.0128 1.00 1.77–2.86 3.12–8.20

180 12.8δ × 2δ × 6.4δ 256 × 128 × 256 9.00 0.200–5.93 4.50 0.0360 2.25 1.57–3.67 2.47–13.5

395 12.8δ × 2δ × 6.4δ 512 × 192 × 512 9.88 0.148–6.51 4.94 0.0395 2.47 1.48–4.55 2.12–20.7
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Figure 1: Configuration of a channel flow and material

lines. The initial material line is straight, and parallel to

the streamwise coordinate in Case X; the wall-normal one,

Case Y; or the spanwise one, Case Z.

boundary conditions are imposed in the x and z directions

and the non-slip condition is applied on the walls. The fun-

damental equations are the continuity and the Navier-Stokes

equations. For the spatial discretization, the finite difference

method is adopted. Further details of the numerical scheme

for the flow field can be found in Abe et al. (2004). The

Eulerian statistics calculated from the present DNS are in

good agreement with the previous works (Abe et al., 2004;

Tsukahara et al., 2005).

A passive material line is expressed numerically by a set

of a number of advecting infinitesimal particles. Once the

channel flow simulation has reached equilibrium, we start

with the particle tracking. The particle equation of motion

for individual point on a material line is advected by the

local velocity as

d

dt
xp(t) = u(xp(t), t), (2)

with xp the particle position and u the fluid velocity. The

perfect elastic collision is adopted on the walls. For practice,

however, no particle reaches the wall surfaces, because the

wall-normal velocity tends to be zero in the close vicinity of

the wall. A segment between two neighboring particles gen-

erally growths in time. To express a line smoothly by a set

of particle points, all segments must be kept short enough

compared to the Kolmogorov scale η. When a segment ex-

ceeds a given threshold ∆L (≈ O(ηmin)) as time elapses, a

new particle is inserted at the center of the segment. The

time step for Eq. (2) is also small enough (∆t � τη).

We report here several cases of the different Reynolds

numbers of Reτ = 80, 180 and 395 (based on the friction

velocity uτ and the channel half width δ). The computa-

tional conditions are presented in Table 1. Some important

Eulerian statistics are also shown for comparison. The su-

perscript of + indicates a non-dimensional quantity scaled

by the viscous wall units. In order to calculate the evolu-

tion of a material line for a long enough time, number of

released particles has increased up to 6 × 107 in the present

simulation.
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Figure 2: Consecutive snapshots of of a material line as it

evolves until t+=180 in the turbulent channel flow at Reτ =

180: from the initial height y+
s = 15. Instantaneous length

at each time is also shown; the initial length L0 is equal

to 6.4δ. The mean flow direction is from bottom-left to top-

right. The grid width of a horizontal plane indicates 20η(ys).

For Case Z (b), two lines at the different times show their

actual relative location.

RESULT AND DISCUSSION

We have carried out simulations for three cases in which a

material line is initially aligned with either of the three coor-

dinate axes (streamwise, wall-normal or spanwise direction)

as shown in Fig. 1. Hereafter, the case of the initial material

line parallel to x axis is called “Case X”; those parallel to y

and z are “Case Y” and “Case Z”, respectively.

Temporal Evolution of Material Line

Several snapshots of typical temporal evolutions of a ma-

terial line at the time of t+ = 72 and 180 are shown in

Figs. 2–4. In order to study the effect of the distance from

the wall, the material lines are released at y+
s = 15 and 180
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(a) Case X (ys = δ) (b) Case Z (ys = δ)
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Figure 3: Same as Fig. 2 but for ys = δ.
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Figure 4: Same as Fig. 2 but for Case Y (L0 = 2δ). The

grid width of a horizontal plane is same with that of Fig. 2.

for Reτ = 180, which correspond to ys = 0.083δ and δ, re-

spectively (here, ys is referred to as an initial height of a

material line for Case X and Z). A material-line length L
is initially L0 at t+=0 and increases up to 410L0 (Case Z,

ys = 15) at t+ = 180, in which the mean flow has passed

by the computational domain (1.3 wash-out time). It is

observed in these figures that the material line is strongly

deformed by turbulence. The deformations of the y+
s = 15

lines is clearly more rapid than those of the ys = δ lines. The

grid width of the horizontal plane shown in Figs. 2 and 3 in-

dicates 20 times Kolmogorov lengthscale η at ys. Note that

both η and τη are minimum in the wall region and increase

in the outer region. The lines seem to be convoluted by

the Kolmogorov-scale vortex at each height. The lower and

higher-Reτ simulations (visualization not shown) also im-

ply that the deformation is governed by the smallest-scale

eddies. This is consistent with the result in homogeneous

isotropic turbulence by Goto & Kida (2003). They reported

that the average curvature of deformed lines is O(10η) irre-

spective of the Reynolds number.

If we compare the deformed lines of Cases X and Z in the

early stage (at t+=72), the line of Case Z from y+
s = 15 is

found to be stretched faster than the one of Case X from the

same height, as shown in Fig. 2. It is well known that quasi-

streamwise vortices dominate in this region (10 < y+ < 30).

In addition, the evolution of the material line at y+
s = 15

in Fig. 2 (b) is qualitatively similar to that of a vortex line

detected by the conditional sampling technique though the

simulation (see Kim & Moin, 1986). Hence, it can be sug-

gested that the material-line deformation is closely related

to the near-wall coherent vortical structures. In Fig. 3, on

the other hand, there is no significant difference of the line

deformation between Cases X and Z in the channel center,

where the turbulent mixing is nearly isotropic.

Figure 4 shows that a growing line initially normal to the

wall (Case Y) is deformed rapidly into a complicated struc-

ture in the both upper- and lower-side near-wall regions.
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Figure 5: Line stretching in the channel flow: the various

conditions in Caes Z are plotted versus time normalized by

the outer-scale variables (a), or by the wall units (b). The

length of the line is normalized by the initial length, Initial

height is y+
s = 5, - - - -; y+

s = 15, ——; and ys = δ, — · —.

The results are averaged over 16 lines.

The mean velocity gradient ∂u/∂y deforms the line into an

elongated shape in the streamwise direction. It, however,

results in a linear growth but not an exponential one. As

pointed out in the introduction, the exponential growth is

brought into a material object evolution by elementary vor-

tices. Most part of elongation takes place near the walls,

where the vortical structures are smaller than ones of the

outer region. Actually, the total length of Case Y increases

as rapid as that of the Case Z (y+
s = 15), as discussed later.

Stretching Rate

To calculate the statistical quantities, the averaging is

performed over at least 128 realizations for Case Y; and 16

realizations for the other cases, in which the initial length

of a material line for Case X and Z is relatively long. The

mean material-line length is plotted as a function of nondi-

mensional time for various Reynolds numbers in Fig. 5. The

straight line in this semi-logarithmic scale indicates that the

length increases exponentially in time. When the time is

normalized by the outer timescale, the growth of a material

line becomes faster at higher Reynolds numbers. We note

here that a small-scale phenomenon should be dominant for

the growth of the line, so that the growth rate is scaled

more suitably by the viscous timescale. The plot against t+

indeed shows better scaling, as seen in Fig. 5 (b).

The stretching rate, γ (defined in Eq. (1)), is plotted for

Reτ = 180 in Fig. 6. On the figure one may notice that:

(i) The transient evolution of γ for an early period t+=0–

100 shows remarkable dependences on the height from the

wall and on the direction of the material line. (ii) In the

channel central region (Fig. 6 (d)), less noticeable depen-

dence is observed on the initial direction as anticipated from
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Figure 6: Average stretching rate γ of a material line as a

function of time t for Reτ = 180. Both γ (defined in Eq.

(1)) and t are normalized by the wall units. (a) y+
s = 5 for

Case X and Z, (b) y+
s = 15, (c) ys = δ/2, (d) ys = δ.
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Homogeneous isotropic turbulence
 Reλ=83 (Goto & Kida, 2003)

Figure 7: Average stretching rate γ of a material line: γ and

time are normalized by the local Kolmogorov time τη(ys).

the visualization described above. (iii) After a transient pe-

riod, t+ > 100, γ+ tends to be close to a steady-state value

of 0.029 at Reτ = 180; 0.022, at Reτ = 80; and 0.033,

at Reτ = 395 (see Fig. 6 (a–c) but figure not shown for

the latter two Reτ ). With scaling by the minimum Kol-

mogorov time τηmin, the steady-state stretching rate settles

down around γ=0.07τη
−1
min irrespective of Re. (iv) The line

of Case Y and the lines of Cases X and Z from the near-wall

region become fully developed at an earlier time (t+ ≈ 120)

than the one in the outer region (t+ > 360, not shown here).

(v) The large γ+, i.e. the enhanced stretching, is observed

in Case Y and Case Z with y+
s = 15, both exhibit almost

the same variation in the early stage (see Fig. 6 (b)).

The latter two observations confirm that the line of Case

Y is stretched especially in the near-wall region as well as the

y+
s = 15 line for Case Z. It can be inferred that the coher-

ent structure in the near-wall region induces the enhanced

stretching of the material lines in the turbulent channel flow.

The time and the stretching rate of Fig. 7 are normalized

by the local Kolmogorov time at its own initial height. For

the first some Kolmogorov times, the curves except for the

10-1 100 101 102
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10-5
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10-3

10-2

10-1

  t+=  14
  t+=  29
  t+=115
  t+=216
  t+=288

Reτ=180
Case Z
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+=15

yp
+

f (
y p

)

∆ymin

10-3 10-2 10-1 100
yp/δ

10-1 100 101 102

∆ymin

yp
+

Reτ=395
Case Z
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+=15

  t+=  32
  t+=  63
  t+=126
  t+=190
  t+=253

10-3 10-2 10-1 100
yp/δ

(a) (b)

Figure 8: P.d.f. of the height of points on a material line

versus time: for y+
s = 15 (Case Z) at Reτ = 180 (a) and

395 (b). The height of the lowest grid ∆ymin is also shown

for comparison.
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1.0

1.5

2.0

2.5

t+

Case-X    -Z
        ys

+=  5
        ys

+=15
        ys = δ

 Case Y

D
c

Figure 9: Correlation dimension of a deformed line as a func-

tion of time at Reτ = 180. The results are averaged over 16

lines.

line of y+
s = 5 are better correlated irrespective of the initial

height and of the Reynolds number. For comparison, a typ-

ical result in the homogeneous isotropic turbulence by Goto

& Kida (2003) is also shown in Fig. 7. Moreover, it can be

found that γτη in the channel flow is comparable to that in

homogeneous turbulence, especially for the early times.

It is interesting to note that the γτη for ys = 5 is remark-

ably small in the early stage (see 0 < t/τη < 5 in Fig. 7),

whereas the values of ys = 5 and 15 are not significantly dif-

ferent after 10 Kolmogorov times. The probability density

functions of the height of points on a material line measured

from the lower wall are plotted in Fig. 8 for various times.

It should be noticeable that the peak of p.d.f. for the de-

veloped line arises at the wall vicinity (y+=3–5), not at the

enhanced-stretching region (y+=15). This implies that the

once stretched line in the buffer region is blown down by the

sweep motion and accumulated in the vicinity of the wall.

Fractal Dimension

In this section we compute a correlation dimension Dc

of a material line in order to quantify the line-deformation

speed and the complexity of turbulent mixing. The correla-

tion dimension we considered here is a correlation exponent

νc obtained by the algorithm of Grassberger and Procac-

cia (1983). The exponent is closely related to the fractal

dimension, and its computation is considerably easier than

another method to calculate the fractal dimension. In this

method, we measure the spatial correlation of points lying
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Figure 10: Local slope of the correlation integral, cf. Eq.

(4), in order to evaluate the correlation dimension of a fully-

developed material line by GP algorithm: at t+=360, for

Reτ = 180. Gray-colored band indicates the 10–20 times

Kolmogorov-scale range: 10ηmin, at the left-side demarca-

tion of the band; 20ηmax, at the right-side one.

on a material line with the correlation integral C(r), which

is defined according to

C(r) = lim
N→∞

1

N2

N
X

i,j=1,i�=j

H
“

r − ˛˛xp(i)− xp(j)
˛

˛

”

. (3)

Here, N is the number of points on the material line, H

the Heaviside function, and xp(i) the position vector of i-th

particle. Local slope of the correlation integral as a function

of the distance r indicates the νc. A certain range of r, in

which C(r) can be represented by a power law

C(r) ∝ rνc

„

νc =
d log C(r)

d log r

«

, (4)

is called ‘scaling range’. The constant νc corresponds to Dc.

Figure 9 shows the dimension of the material line as

a function of time. The Dc becomes larger than topo-

logical dimension (D = 1), thus suggesting some kind of

self-similarity in the deformed line. In all cases except for

the early period of Case X (y+
s = 5), the Dc increases with

time. The gradient of the incrementation depends on the

initial condition of the line, while not for t+ > 120.

The result of the correlation integral is shown at t+ = 360

in Fig. 10. The correlation dimension of the fully-developed

line in any case reveals its asymptotic value of about 2.5,

which agrees well with those obtained by Mandelbrot (1975)

and Sreenivasan (1991). They report that, for passive scalars

of unit Schmidt number, the fractal dimension of a scalar

interface is 2.3–2.5 independent of flow configuration as long

as the flow is fully turbulent. It appears from Fig. 10 that

there exists a scaling range (shown with a gray band in the

figure) over which the fractal dimension is Dc = 2.4–2.5.

The scaling range roughly accords with the diameter of the

fine-scale eddies in the turbulent channel flow (Tanahashi et

al., 2004). For very small distances of r/δ � 0.1, the data

for C(r) deviate from a power law, which was to be expected

because the behaviour for r � η is not chaotic.

Infinitesimal-line-element growth: Stretched Factor

In addition to the finite-sized material-line simulation

presented as above, we also executed DNS with respect to

an infinitesimal line-element stretching. To examine the
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Figure 11: Contours of an instantaneous flow field and

stretched-factor distributions in a (z, y) cross section: vector

in (a) shows (w′, v′) velocity; color contours (a) streamwise

velocity fluctuation u′+, (b) streamwise component of the

stretched factor λ∗
x, (c) wall-normal component λ∗

y , and (d)

spanwise component λ∗
z ; isoline contours II′+ (from −0.3 to

0.1 with increments of 0.02, but line of 0.0 is not shown).

Solid and dashed lines represent positive and negative quan-

tities, respectively. White markers indicate the center of the

quasi-streamwise vortex (+), and the location of the burst

associated with Q2/Q4 event (×).
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contribution of the coherent structures upon the enhanced

stretching, it is convenient to consider line elements at sev-

eral points. Here, we address the issue of the relationship

between the structures and the stretched factor λi (defined

as follows) of line elements:

λi =
1

∆t
log

˛

˛δxi(∆t)
˛

˛

˛

˛δxi(0)
˛

˛

(5)

=
1

∆t
log

˛

˛

˛

˛

∂u
′

∂xi
∆t + ei

˛

˛

˛

˛

, (6)

where δxi denotes a line-element length. The λi represents

the exponential rate of separation of two infinitesimally close

flow fields: its positive value notes an exponential growth of

the i-direction line.

In Fig. 11, we show the flow field on a cross-section of

arbitrarily chosen coherent structures which are located at

the near-wall region. A quasi-streamwise vortex and a burst

are detected by the second invariant II′+ of deformation ten-

sor. Contours of λx, λy and λz are given in Fig. 11 (b)–(d),

where the symbols denoting the vortex and the burst are

also shown. Figures 11 (c) and (d) show that the intensified

growths of the spanwise line element and of the wall-normal

one, i.e. λz � 0 and/or λy � 0, take place at the burst

event and around the quasi-streamwise vortex. On the other

hand, as for the λx in Fig. 11 (b), a negative region corre-

sponds to the burst. These results are consistent with the

high stretching rates in Case Y or Case Z (y+
s = 15) and

with the low rate in Case X, as discussed above.

In this paper, the material-line evolution are described in

order to study the turbulent mixing. It is also important to

predict the turbulent dispersion of a scalar contaminant or

heat. Le & Papavassiliou (2005) investigated the dispersion

of the scalar emitted from a line source in the turbulent chan-

nel flow at various Prandtl numbers. They reported that

the enhancement of turbulent dispersion is attributed to the

large-scale structure in the outer layer. However, due to the

exponential growth, it is difficult to simulate material-line

dispersion for a long enough time to capture the large-scale

motion. With the use of recent supercomputers it should be

possible to study the long-time evolution of a material line

and surface. This kind of study is planned for the future.

CONCLUSION

We performed DNS of the turbulent channel flow in

which the motion of a material line had been calculated.

The stretching rate and the fractal dimension of the mate-

rial line are analysed with emphasis on the dependence on

the initial conditions.

When normalized by the minimum Kolmogorov time, the

steady-state stretching rates are scaled well for the present

Reynolds number range irrespectively of the initial condi-

tion, which is in agreement with previous work on homoge-

neous isotropic turbulence. However, the stretching rate of

γ = 0.07τη
−1
min is smaller than that (γ = 0.17τη

−1
min) of the

homogeneous turbulence by Goto & Kida (2003), since the

Kolmogorov scale changes with respect to the height from

the wall. Both visualizations and statistical results show

that the enhanced stretching is closely associated with the

fine-scale coherent structures in the near-wall region, except

for the wall vicinity (y+ ≤ 5). The material lines normal

to the flow direction are stretched well in the buffer region.

Their fractal dimensions increase remarkably with time, but

they do not exceed Dc = 2.5 even if the lines are fully de-

veloped.
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