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ABSTRACT

Pressure is a fundamental quantity contained in the dy-
namical equation of fluid motion. In a usual notation, pres-
sure relates to the acceleration vector, which is decomposed
into the contributions from the pressure gradient and viscous
force while the fluid density is constant. Although the accel-
eration may be important and basic representation of fluid
motion, and Lagrangian acceleration is the core of the kine-
matic theory of turbulent dispersion, its direct measurement
was very difficult. In this paper, we evaluate the acceleration
by means of pressure fluctuation because, at large Reynolds
numbers, the viscous contribution to the acceleration can
be ignored. Accordingly, the acceleration is evaluated as the
pressure gradient. Measured data are compared with direct
numerical simulation. And the shear effect on the acclera-
tion is discussed.

INTRODUCTION

The motion of fluid particles as they are pushed along the
trajectories by fluctuating pressure gradient is fundamental
to transport and mixing in turbulence. It is essential in
cloud formation, atmospheric transport, chemical reaction
process, and in combustion system. In principle, fluid par-
ticle trajectories are easily measured by seeding a turbulent
flow with small tracer particles and following their motions
with an imaging system. But, in practice, this can be a
very challenging task because we must fully resolve particle
motions which take place on the order of Kolmogorov time
scale. This kind of measurements was achieved (La Porta et
al., 2001) with using a specially designed particle tracking
system in high energy physics and PIV system (Ayyalaso-
mayajula et al., 2006).

In a usual notation, acceleration vector is given by N.S.
equation as follows; a = Du/Dt = —V(p/p) + vV2u. This
means that acceleration is decomposed into the contribution
from pressure gradient and viscous force while the fluid den-
sity is constant. In a fully developed turbulence, the viscous
damping term is small compared with the pressure gradi-
ent term, therefore, the acceleration is closely related to the
pressure gradient. In this study, lagrangian acceleration is
evaluated by measuring the instantaneous pressure fluctua-
tions.

‘We have developed the accurate pressure measurement
technique. As it will be mentioned in the later section, pres-
sure probe consists of a standard Pito-static tube and 1/8
inch condenser microphone, and several points are taken
into account for accurate measurements. For instance, HR
(Helmholz resonance) and standing waves in static tube
should be removed. Flow attach angle and special resolu-
tion are another important factors. Using this technique, we
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have measured so far the pressure intensity in the cylinder
wake, square jet, and boundary layer. The spectral shape,
the correlation between wall pressure and pressure in the
boundary layer, the velocity pressure correlation, and prob-
ability density function were studied. They were carefully
compared with DNS (Tsuji and Ishihara, 2003). These re-
sults encourage us to evaluate the acceleration by means of
pressure gradient measurements.

Pressure gradient measurement was performed by using
two pressure probes. The pressure difference measured at
a distance Ay(or Az) becomes pressure gradient dp/dy(or
dp/dx) as far as Ay (or Az) is sufficiently small. Calculat-
ing the statistics, such as probability density function and
spectrum, they are compared with previous results. Also the
shear effect on the acceleration is discussed.

EXPERIMENTAL CONDITION

Driving mixing layer

The region of primary examination in this study is the
centerline of the driving mixing layer generated by a square
jet from the jet exit to six diameters downstream (see Fig. 1).
In this region flow reversals are unlikely and large yaw an-
gles by the flow are infrequent. Because both mean shear
and turbulent intensity are large, it provides large pressure
fluctuations which can be accurately measured. The nozzle
exit size is 700 x 350mm. The velocity sensors and pressure
sensors were mounted on the traversing supports which pro-
vided full three-dimensional positioning with separations.

Self-preservation of the shear layer profile is demon-
strated for the mean velocity and for the r.m.s. value of
the stream-wise velocity. They are plotted in Fig. 2, where
Uy is the nozzle exit mean velocity. A virtual origin zg is
needed in each of the profiles to collapse the data, although
it is very small, indicating that the mixing layer had already
achieved a finite thickness at z = 0 because of the width

=
Mixing layer centerline

Figure 1: Driving mixing layer and coordinate system.
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Figure 2: Mean and root mean square of stream-wise ve-
locity component for the case of Uy = 6.0m/s. Different
symbols indicate different &/d positions.

of the nozzle rip. A simple mean velocity gradient is con-
firmed in 0 < y/(z —x9) < 0.5, and the normalized intensity
Urms /Uy is almost constant. In the following, we analyze
the data in this region.

The Taylor-scale Reynolds number; Ry = u,A/v, is tra-
ditionally used to characterize the turbulence. Here, u, is
the root mean square of stream-wise velocity fluctuation.
The Taylor micro scale, A, is related to the velocity deriva-

1/u$/<(8u/6x)2>. It does not have a clear

physical interpretation, but is a well-defined quantity that is
often used. On the other hand, the essential parameter char-
acterizing the shear effect on the small scale is introduced
as follows:

tive, A\ =

ST =(v/ (NP S 5 =dU/dy, (1)
where (¢) is the energy dissipation rate per unit mass, and S
is a mean velocity gradient. The S* is the ratio of mean shear
time scale to the smallest eddy time scale 7, = (v/ (eNY/?,
which is called the Kolmogorov time scale. Also the length
and velocity scale are defined as n = (v3/ (¢))'/4 and u, =
(v (€))%, respectively. If S* is small, so also the level of
anisotropy created by the mean shear might be small. The
criterion for the isotropy of the smallest scale is expressed
as S* < 1. In the simple uniform shear flow, with assuming
the energy production equals to the dissipation (¢) and the
local isotropy, S* relates to Ry as

1 /20 .,
S*Qa ?RA (XR)\ 5 (2)

and typical length and velocity scale are simply reduced to
Lo =S732 ()12~ 3% g, (3)
us = ((6) /9)'V? = \/3A1/2 - u, @

where A; is Townsend’s structure parameter,
Al =—(uwv) /ur , ur= [u3+vf+w3] /2 (5)

and L = ur3/2/(¢). ur, vr, and w, are root mean square
of velocity fluctuation. The relation between S* and Ry
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Figure 3: Reynolds number and shear parameter measured
in 0 < y/(x —xo) < 0.5. Solid line indicates the relation
Ry x S*.

is plotted in Fig. 3. The data scatter around the relation
S* «x Ry, and we find that this flow field, restricted in the
range 0 < y/(x —xo) < 0.5, is close to the simple shear flow.

Pressure probe and its calibration

The measurement of pressure fluctuation in the flow
field is accomplished with a standard 1/8-inch condenser
microphone. A microphone is available for measuring the
frequency of 10 ~ 70 x 103Hz. The lower frequency is re-
stricted due to its mechanical system. The dynamic range
is 2x 1074 ~ 3.2 x 103 Pa, so a very small amplitude can be
measured. The probe is a standard Pitot-static tube mea-
suring ¢1 = 0.5 mm in outside diameter, the tube thickness
is h = 0.05 mm.

Four static-pressure holes (¢1 = 0.15 mm in diameter)
are spaced 90° apart and located at a distance of L1 =
15.5 mm from the tip of the probe to minimize sensitivity
to cross-flow error. The leeward end is terminated by the
microphone. The sensor diameters is d = 2.3 mm. The
detailed sketch is given in the reference (Tsuji et al. 2005).

Yaw angle effect

The pressure sensor is aligned with the probe body axis,
which during the experiments in turn is aligned with the
mean flow direction implying that a small angle towards the
plate is kept. In a preliminary investigation the yaw angle
effect, on the measured pressure, between the pressure probe
and the mean flow direction was studied. This was done
by rotating the probe —20° < § < +20° in the potential
core of a round jet, which had an initial velocity of U; =
10 m s~!. For each angle 0 the mean differential pressure
between the static Py and a reference pressure was measured
with a manometer (dynamic range 50 Pa), whereupon the
corresponding pressure coefficient was calculated according
to:

Cp = (B~ Po) /5003 ©)

Here, Py is the mean pressure at # = 0° and in Fig. 4 Cp

0] P LSS Y7L L —
NQ i oo ® °° *te. ® e T
%-20—. o B ————_— e
= B =+ 7° : less than 3% N
c: -40_ i
< -60p L | ! ]

-20 -10 0 10 20

Figure 4: Effect of Yaw angle.



is plotted versus the yaw angle. In the range of +5°, we
observe —0.001 < Cp < 0 and the variation among the
different probes is small.

The early analysis of Goldstein (1936) indicated that a
static tube reads a pressure equal to P, = P + kp(v2, , +
w2,,5), where k is a small coefficient. The effect of turbu-
lence on the measured value of static tubes seems to be much
smaller than previously known as long as the static tube and
pinholes are made small enough (Chue, 1975).

Microphone calibration

When measuring static pressure fluctuations there are
not only a direct influence from the probe dimensions chosen,
but also an indirect by means of physical flow phenomena
that appear inside the probe. Here, this is discussed and
the calibration procedure is presented which accounts for all
effects by numerical treatment of the static pressure signal.

The calibration of the static pressure probe, operated
with the transducer or the microphone as pressure sensor, is
done as follows. The probe is set parallel to an opened ref-
erence microphone in front of a loudspeaker. A fluctuating
pressure stream is generated by a random noise generator
and the two signals are acquired simultaneously. The out-
put signal from the pressure probe ps(t) will not the same
as the signal p,(t) measured by the reference microphone,
due to probe influence, Helmholtz resonance, and standing
waves. The frequency response of the system is limited by
the Helmholtz-resonator (abbreviated as HR) caused by the
tube and sensor cavity (Kobashi, 1957; Toyoda, 1993). This
HR frequency is calculated as:

Us S
fr= w\ v’ (M
where V is the cavity volume, L3 is the tube length, U is
the speed of sound and S is the cross sectional area. For
instance, with V = 7d?L./4 m® and S = 7(¢2)?/4 m? the
resonant frequency is 2.5 kHz and 11.1 kHz for the micro-
phone (d = 7.0 mm, ¢» = 1.0 mm, L3 = 18.5 mm) and the
transducer (d = 1.6 mm, ¢2 = 1.0 mm, Lz = 18.5 mm),
respectively. The amplitude ratio variation and phase de-
lay between the two signals ps and p, can be computed by
applying the following simple HR model:

L@ybe@) ] o
26(f/fr)

07« = —tan~ {41 — (f/fr)2 } )

where ¢ is a numerical constant. It should be noted that
Egs. (8) and (9) give an approximation to the measured A,
and 6. This model works well if the pressure fluctuation
is sufficiently large. But it can be generalized as follows for
the smaller pressure intensity.

=@y o
26Cs (f/fr)

—tan— { 1_ (f/fr)2 } ’

where a, 3, v, C1, and Cs are function of flow condition.
In Fig. 5, we indicate how HR changes depending on these
parameters. In general, HR is not so significant for small
pressure fluctuation. But it becomes large for moderate

A,

(9)

A,

0, = (11)
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Figure 5: Helmholtz resonance generated inside pressure
tube. Amplitude A, and phase delay 6, are given in
Egs. (10) and (11).

pressure intensity. In this paper, HR is removed numeri-
cally according to the intensity measured in the flow field.
Detailed discussions are given in (Tsuji et al., 2007).

A standing wave inside the pressure tube may also cause
a small disturbance to the pressure fluctuations. The fre-
quency of the standing wave is given by fs = Us/As (where
As/4 = L3), which gives a fs of about 7.1 kHz for probel.
Another possible limitation may be the spatial resolution
of the probe which may be limited by the pinhole size as
well as the circumference of the probe itself. For instance,
in the log-region at Ry = 16000 the ratio between the pin-
hole diameter and the Kolmogorov scale can be estimated
to d/n = 1.32.

In order to achieve accurate measurements, both mean
and fluctuations of the measured pressure signal are cor-
rected according to the appropriate calibration. The am-
plitude ratio and phase delay caused by the HRis removed
numerically from the measured signal. Yaw angle effect is
negligible in the range of —5° < # < 5°. The standing wave
generated inside the tube restricts the time frequency re-
sponse up to 10 kHz. The spatial resolution is around the
Kolmogorov length scale. The background noise is corrected
in the statistical sense (this point is not explained here, but
see the reference (Tsuji et al., 2007), which can be assumed
to be negligible around the centerline in mixing layer.

RESULTS AND DISCUSSIONS

probability density function

Figure 6 shows the static pressure pdfs in the center
of mixing layer. Different symbols indicate the different
Reynolds numbers and shear parameters. Solid line is the
result of nearly isotropic condition (so there is no shear ef-
fect). Pdfs are skewed on the negative side and it departs
from Gaussian considerably. Around the core, the maximum
probability locates a little apart from the centre (p/o = 0)
to the positive side. It is larger than Gaussian, and the
dependence on shear parameter seems to be weak. On the
tail parts, negative side deviates from Gaussian significantly,
which is decreases as shear parameter decreases. Compared
with the case of Ry = 297 (S* = 0.0695) with the isotropic
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Figure 6: Probability density functions of pressure fluctua-
tions measured in the mixing layer. The solid line is the case
of no shear (dU/dy = 0).

condition, the positive tail parts are close to Gaussian. How-
ever, in the negative tail parts, the mixing layer has a smaller
pdf than that of isotropic condition, that is, the shear effect
decreases the negative pressure probability. According to
the decomposition of p, a mean velocity gradient is included
in a source term of rapid pressure p(T), which means that the
shear effect appears mainly in p("). It may be assumed that
the negative large-amplitude pressure fluctuation associate
with the rapid pressure term.

The pressure difference measured at a distance Ay(or
Az) becomes pressure gradient dp/dy(or dp/dz) as far as Ay
(or Az) is sufficiently small. Here, Az (or Ay) is set at a few
times of Kolmogorov length scale. Pressure gradient distri-
bution has a stretched exponential shape as shown in Fig. 7,
in which the tails extend much further than a Gaussian dis-
tribution. This indicates that acceleration is an extremely
intermittent variable. Different symbols indicate the differ-
ent Reynolds numbers. As Reynolds number increases, it is
found that this intermittency increases. In Fig. 8, the higher
order moments are plotted and compared with DNS of ho-
mogeneous isotropic condition. The skewness is almost zero
and slightly increases in Ry > 300. The flatness values in
the mixing layer are smaller than DNS results. Thus, we
can conclude that the shear effect decrease the intermittent
property of pressure gradient. When the flatness of veloc-
ity gradient (du/dz, which can be interpreted as Eulerian
acceleration) is compared with that of pressure, it is clearly
understood that the acceleration field is more intermittent.

spectra
Kolmogorov presented a hypotheses for small-scale
statistics based on the idea of local isotropy (Monin and
Yaglom,1971), which is restated by the relation,
Epp(k1) = p? <5>3/4 vy (kam) (12)
for the one-dimensional energy spectrum of the pressure fluc-
tuations. ¢, is a non-dimensional function of the (stream-
wise) wave number normalized by the Kolmogorov length

1/4

scale n defined as n = (V3/(a)) / , where (g) is the en-
ergy dissipation rate per unit mass on average. According
to Kolmogorov’s idea, i.e. when the Reynolds number be-
comes large, the spectrum exhibits an inertial subrange (for
kin < 1) with a simpler form independent of kinematic vis-
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Figure 7: Probability density functions of pressure gradient
measured in the mixing layer.
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Figure 8: Skewness and flatness of pressure gradient (solid
circles). Open square symbols are DNS by Vedula and Yeung
(1999).

cosity:

Epp(k1) = Kpp? ()3 k7% (13)

The —7/3 power-law scaling was supported theoretically
with various assumptions in the 1950’s by (Batchelor, 1951;
Inoue, 1951; Obukhov, 1951). Recently, Tsuji and Ishihara
(2003) have examined the pressure spectrum in fully de-
veloped turbulence. A power-law exponent of the pressure
spectrum was systematically obtained by fitting the relation

Epp(k1) = Kp' p? (e)¥/* v/ 4 (kam)® (14)
against the measured spectra (K’ is a non-dimensional con-
stant quantity). The scaling exponent 7, was determined by
maximizing the width of the spectrum, i.e. which shows the
broadest flat region of Epp/(k1n)’». They measured the
static pressure fluctuations on the centreline of a plane tur-
bulent jet for a range of Reynolds numbers (200 < Ry <
1200), and concluded that if the scaling exponents -y, are
plotted as a function of Ry, they indeed found a substan-
tial departure from the —7/3 value for the exponent at low
Reynolds numbers. However they also found the exponent to
approach —7/3 as the Reynolds number was increased and
the —7/3 power-law scaling was confirmed for Ry > 600.
This is a significantly higher Reynolds number than needed
for inertial range scaling in velocity statistics. The pressure
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spectrum has a noticeably narrower scaling region than for
the velocity spectrum. This is consistent with the result that
a higher Reynolds number is needed to realize a clear —7/3
power-law scaling. Not only the Reynolds number but also
the shear effect has an important influence on the power-
law exponent. In the previous study (Tsuji et al., 2007), we
examined the Kolmogorov scaling of pressure fluctuations
in the turbulent boundary layer, and evaluated the effect of
both shear and Reynolds number on the deviation of 7, from
the —7/3 value.

In Figure 9, the exponent <, is plotted against the
Reynolds number and shear parameter. The results of no
shear (dU/dy = 0) is plotted as a dashed lined and the val-
ues measured in the boundary layer are plotted by symbols.
As Reynolds number increases, the exponent approaches to
the expected value —7/3. In the mixing layer, there is small
difference from the case of no shear, but they are much larger
than those in boundary layer case. As plotted against the
shear parameter, v, deviated from the expected value for
large S*. Large shear effect remains in the inertial range,
and we assume that the —7/3 power-law will be realized in
small S* such as O(1073).

In the acceleration spectra, the expected power-law ex-
ponent —1/3 is well observed in the present measurements.
And the shear effect on the scaling exponent can be discussed
in the same way. It is noted that the acceleration spectrum
is hard to obtain as far as pursuing the particle trajectories.
Following the Kolmogorov’s idea, acceleration is scaled by
the energy dissipation rate and kinematic viscosity as

(aiaj) = a063/2l/71/2(5i]‘, (15)
where a; = (1/p)0p/dz;. The constant ag is expected to be
universal. But the recent DNS (HIT) and La Porta’s exper-
iment do not show that ag is not constant but a function of
Reynolds number. In a shear flow (Mixing layer), ag is much
smaller than those of HIT. As Ry increases, ag increases and
approaches the values of HIT. Present result indicates that
the local isotropy is realized at Ry ~ 2000 in the inertial
range. But more detailed discussions are necessary for the
shear effect (large scale anisotropy) on the acceleration. This
point will be discussed in the presentation.
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