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ABSTRACT 
The advanced ‘comprehensive’ laser Doppler 

velocimeter is used to acquire spatially and temporally 
resolved turbulence structural measurements in high 
Reynolds number two- and three-dimensional turbulent 
boundary layers. The new instrument directly measures 
three-dimensional particle trajectories at high repetitions. 
These trajectories are analyzed in post-processing to obtain 
fluctuating velocity gradient tensor fields, which lead to 
direct measurements of turbulent viscous dissipation rates. 
Such data acquired in two- and three-dimensional boundary 
layers with approach flow momentum thickness Reynolds 
number,  are presented. Results indicate that 
anisotropy of the dissipation rate of Reynolds stresses 
persists to similar heights in viscous wall units as obtained 
with direct numerical simulations at lower Reynolds 
numbers. Measurements in a three-dimensional turbulent 
boundary layer in the vicinity of a wing/body junction also 
indicate that a reduction in the value of the 
velocity/pressure-gradient correlations for the Reynolds 
normal stresses reduces the turbulent energy redistribution 
and contributes to reduced shear stress magnitudes, as 
observed previously through DNS (Moin et al. 1990). 
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INTRODUCTION 
  Understanding the turbulence transport in shear flows is a 
key topic in fundamental research due to the immediate 
implications that the Reynolds stress transport equations 
have on modeling for the Reynolds stresses. Although the 
most-obvious uses for the models of the turbulence 
structural (transport) terms is in Reynolds-averaged Navier-
Stokes (RANS) solutions, other solution techniques benefit 
from the information obtained by studying Reynolds-
averaged turbulence structure. For instance, hybrid 
LES/RANS approaches have been developed and shown to 
be much more computationally efficient than LES and 
produce promising results (Labourasse and Sagaut 2002).  

The Reynolds stress transport equations are given as 
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where the production rate of the Reynolds stress tensor, 

jiuu , is 
kikjkjkiij xUuuxUuuP ∂∂−∂∂−= // , the velocity-

pressure-gradient tensor is 
( ) ( ) ( )ijjiij xpuxpu ∂∂+∂∂−=Π ///1 ρ  with p being the 

fluctuating static pressure, the dissipation-rate tensor is 

( )( )kjkiij xuxu ∂∂∂∂= //2νε , and ν  is the kinematic 

viscosity. Each of the terms with the exception of  in 

equation (1) may be measured using the ‘comprehensive’ 
laser-Doppler velocimeter (CompLDV) described by Lowe 
(2006) and Lowe and Simpson (2007). To obtain transport 
rate budgets,  is determined by the balance of equation 

(1) using direct measurements for each of the terms therein, 
including the non-isotropic dissipation rate tensor, 

ijΠ

ijΠ

ijε . The 

dissipation rate tensor is directly evaluated from velocity 
gradient measurements that are possible with the unique 
capabilities of the CompLDV to be discussed. 
  By determining the non-isotropic dissipation rate directly 
and without the use of Taylor’s Hypothesis and anisotropy 
models, a higher fidelity measurement of the velocity-
pressure gradient tensor, , is possible in high Reynolds 

number flows that cannot be simulated by direct numerical 
simulations (DNS). The importance of the velocity-pressure 
gradient term in wall-bounded three-dimensional (3D) flows 
has been shown for low Reynolds numbers by the DNS of 
Coleman et al. (2000). In the strained channel flow DNS, 
those authors discovered that  is of primary importance 

to the evolution of the Reynolds stresses. They showed that 
the lag between the mean shear rate and the Reynolds shear 
stresses, a key modeling problem in 3D flows, is primarily 
due to this term. Understanding the role of the velocity-
pressure-gradient tensor in redistributing the Reynolds 
stresses is a key to improved modeling for the future of 
RANS and hybrid LES/RANS approaches. 

ijΠ

ijΠ

  The direct measurement of velocity gradients for 
determining non-isotropic dissipation rates has received 
much attention in experimental fluid mechanics, due to the 
fundamental need for such measurements. Several 
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researchers have utilized a number of techniques for making 
turbulent velocity gradient measurements, such as hot-wire 
anemometry (Wallace and Foss 1995), particle image 
velocimetry (Meneveau and Katz 2000; Mullin and Dahm 
2006), and laser-Doppler velocimetry (LDV; Tarau et al. 
2002; Yao et al. 2001; Agui and Andreopoulos 2002). The 
reader is referred to Lowe (2006) for a more extensive 
review of the prior art in velocity gradient measurements. 
All the prior methods examined for turbulent velocity 
gradient measurements suffer from significant limits in 
spatial resolution and/or velocity dynamic range and are of 
limited applicability to high Reynolds number flows. This 
void is partially filled by the new CompLDV technologies 
discussed herein. 

 
THE COMPREHENSIVE LDV TECHNIQUE 
  The CompLDV technique is capable of making highly-
resolved particle trajectory measurements in turbulent flows 
(Lowe 2006; Lowe and Simpson 2007). The technique is 
based upon the principles of Gaussian beam coherent laser 
interference and Doppler shift due to particle scattering so 
that the instrument is closely related to the LDV technique. 
The CompLDV employs a novel optical arrangement to 
achieve low-uncertainty, time-resolved measurements of 
three-components each of particle position, velocity, and 
acceleration. In this work, the use of such measurements for 
directly estimating velocity gradients is explored. 
  The key development for measuring velocity gradients 
with this technique is the capability to measure positions of 
successively arriving particles at very high spatial 
resolution. In past work, sub-measurement volume position 
resolution LDV techniques have been developed (Czarske 
2001; Czarske et al. 2002). These methods employ 
interference fringe patterns with calibrated spatial variations 
to obtain particle position resolutions at two-orders of 
magnitude smaller than the measurement volume diameter. 
This same fundamental concept is used in the CompLDV 
described herein and by Lowe (2006) and Lowe and 
Simpson (2007). The reader is referred to the paper by 
Czarske et al. (2002) for further details about fundamentals 
of particle position sensing in LDV. 
  To exhibit the capabilities of the CompLDV for particle 
position measurement, velocity profile measurements in 
two-dimensional (2D) flat plate TBLs are presented in 
Figure 1. These data have been obtained in the Department 
of Aerospace and Ocean Engineering Boundary Layer 
Research Wind Tunnel at Virginia Tech. CompLDV 
measurements at two momentum thickness Reynolds 
numbers ( νθθ /Re ∞≡U , where θ  is the momentum 
thickness),  and  are plotted. To 
obtain these data, measurements were acquired at six 
individual positions of the center of the measurement 
volume relative to the wall. The data presented are the mean 
stream-wise velocity statistics that have been divided among 
bins according to the normal-to-wall particle positions 
measured relative to the measurement volume center. When 
normalized with viscous wall scaling using the skin friction 
velocity as the velocity scale, , and the viscous 
length scale to normalize the vertical height, 

5930Re =θ 7500Re =θ

τuUU /≡+

νδ τν // yuyy =≡+ , the comparison with previous 
conventional LDV data of DeGraaff and Eaton (2000) at a 
comparable Reynolds number along with the DNS data of 

Spalart (1988) at a lower Reynolds number is excellent, 
particularly in the viscous sublayer.  
 
VELOCITY GRADIENT MEASUREMENT 
CONCEPT 
  The problem of estimating velocity gradients from 
CompLDV data is posed as follows: 
  Given the velocities and relative positions of N particles 
( ), determine the velocity gradient tensor that is 
consistent with the data within experimental uncertainties 
and the constraints imposed by coherent turbulence scales. 

4≥N

  The geometry of the problem is shown schematically in 
Figure 2. The particles arrive randomly in space and time. 
The statistics of the arrivals depend on the turbulence level 
as well as the velocity gradients across the volume 
(Albrecht et al. 2003). In the case of zero turbulence and 
velocity gradient, the arrival time statistics follow a Poisson 
(exponential) distribution, while the particles are uniformly 
distributed in space. The probability distribution function 
(PDF) of the measurement-volume validation weights the 
arrival position so that the measured positions are not 
uniformly distributed. The extrapolated volume, as depicted 
in Figure 2 is aligned approximately with the mean flow 
direction in the case that turbulent flow angles are relatively 
small.  
  A technique for estimating the velocity gradients from data 
as in Figure 2 is developed based upon an over-constrained 
system for the N-particles that cross the measurement 
volume within the allowable time t. To construct a least-
squares cost function, some model for the distribution of the 
measured quantities must be assumed. In this case, we 
desired a coherent-structure-based model for the velocity 
field observed over a short record of time. The model 
assumed is a swirling structure aligned with the nominal 
mean flow direction and with a relatively large extent in 
space for that direction. The near-wall coherent structures in 
the 2DFPTBL such as the quasi-stream-wise vortex of 
Robinson (1991) have been observed to be consistent with 
this model. Further from the wall, it is still observed that the 
stream-wise ‘legs’ of ‘crescent-shaped’ structures are those 
that contribute to dissipation of the turbulence energy in the 
Reynolds stresses as the legs stretch and the vorticity within 
is intensified. The existence of these elongated dissipative 
structures gives credence to a technique that utilizes a long-
narrow region of fluid as the basis for obtaining resolved 
velocity gradients. A simple structure of the velocity 
distribution is assumed such that the nine Cartesian-
components of the velocity gradient tensor are modeled as 
constant within the observed region of flow. 
  To implement the model chosen, we refer again to Figure 
2. The centroid velocity and position of the N particles may 
be readily obtained from the measured Doppler data. In the 
case that the velocity field assumed is exact and the 
measurements are without uncertainty, then a velocity 
gradient field which is consistent with the measurements 
will result in the following relationship: 
 
             ( ) ( ) ( )[ ]( ccici WVUrrWVUWVU ,,,,,, ∇⋅−+=

vvv )      (2) 
 

where ir
v is the position vector of the ith particle, 

kWjViUU iiii
ˆˆˆ ++=

v is the velocity vector of the ith particle, 

cr
v is the position vector of the centroid of the N particles 
considered for velocity gradient tensor estimation, and 
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kWjViUU cccc
ˆˆˆ ++=

v is the centroid velocity vector for the 
N particles. Equations (2) may also be thought of as the 3D 
Taylor-series expansions for the velocity components 
truncated for velocity derivatives of order 2 and greater 
[although one may refine velocity estimates using the 
CompLDV acceleration measurements to enhance the order 
of the method (Lowe and Simpson 2006)]. In the 
CompLDV measurements, uncertainty exists both for the 
measurements obtained as well as for the model equations 
(2). To mitigate this, redundant measurements for several 
particles are used along with equations (2) to construct 
objective cost functions that must be minimized by 
successive guesses for the velocity-gradient tensor. The cost 
function chosen is a least-squares error function developed 
from equation (2): 
 

( ) ( )[ ]( ) ( ){
2

1
,, ,,,,,,∑

=

−∇⋅−+=Φ
N

i
iccicWVU WVUWVUrrWVU

vvv }

]

(3) 

 
where  represents the three cost functions that are 

minimized to obtain the velocity gradient estimates. Note 
that in this implementation, the velocity components are 
decoupled except in the convection velocities that are 
hidden in the calculation of the position vectors: 

WVU ,,Φ

 
( ) ( )[ ] ( )[ kttWzjttVyittUr AiiAiiAii
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where tA is the arrival time for the ith particle, t0 is the time 
at which the centroid information is computed, and yi and zi 
are the position components directly measured by the 
CompLDV. It is taken that the arrival time measurement for 
the burst occurs when the particle is at the location xi=0, 
which is an excellent assertion considering the overall 
length of the volume under consideration. 
  The least-squares technique was tested using a Monte 
Carlo simulation to ensure that the optimization scheme 
would return the proper velocity gradient tensor with no 
uncertainties input. Details of this simulation may be found 
in the description by Lowe (2006). The resulting statistics 
indicated that the mean velocity gradient input was 
recovered with less than 5% discrepancy, while the artificial 
turbulence levels, indicative of fluctuating gradient 

uncertainties, were on the order of ( ) 44/ 2 −<∂∂
+

Exu jiδ  

at 95% confidence (where the superscript + indicates 
viscous scaling). For comparison, typical values in the 
2DFPTBL at y+=100 for the mean-square fluctuation tensor 

are ( ) 006.0003.0/ 2 −≈∂∂
+

ji xu  with the exception of the 

stream-wise velocity gradient along the same direction 
which is smaller, O(0.001). Since the x-position is measured 
at such a small relative uncertainty (see Figure 2), the 
artificial stream-wise velocity gradients fluctuations were 

observed from the simulation to be ( ) 74/ 2 −<∂∂
+

Exuiδ  
at 95% confidence, indicating that the complete tensor could 
be measured at acceptable uncertainty levels. 
 
RESULTS AND DISCUSSION 
  The technique for obtaining dissipation rate measurements 
was applied to the 2DFPTBL at  and a 3D 

TBL alongside of a wing/body junction undergoing the 
same approach flow as the flat plate case.  

7500Re =θ

  In the case of the 2DFPTBL, the skin friction velocity was 
determined using a fit to the sublayer data shown in Figure 
1 to obtain a result of smu /02.1=τ  

for the approach 
velocity of smU /0.28=∞ . 

 

  To implement the velocity gradient measurement scheme 
discussed above, time windows for accepting series of 
particles were determined based upon coherent structure 
convection velocities and sizes. For the coherent structures 
in the near-wall region, it has been observed that the 
convective speed of eddies is  (Ahn and 
Simpson 1987) and typical active near-wall structures exist 
in very long dimensions of x

14/ ≈τuUC

+=500 or greater (Robinson 
1991). From this, time windows were used that were always 
less than the ratio of the stream-wise length scale to the 
convective velocity scale. Additional details about the 
application of the technique are described by Lowe (2006).  

  The distributions of the Reynolds normal stress 
dissipation rates measured with the velocity gradient 
technique are plotted in Figure 3, normalized using wall 
variables. To the authors’ knowledge, these measurements 
are the first of their kind at Reynolds numbers of this 
magnitude in turbulent boundary layers. The measurements 
in the 7500Re =θ  flow closely follow the trends of the 

DNS data of Spalart (1988) at . Note that 
anisotropy exists in the dissipation rate to values of y

1410Re =θ
+ of 

about 100, similar to the results obtained by Ölçmen and 
Simpson (1996) using the anisotropy model of Hallbäck et 
al. (1990) for the same flow. These results contradict simple 
blending function models such as the one due to Lai and So 
(2000), which gives isotropic predictions for y+>10. 
  Using the dissipation rate data from Figure 3 and the 
velocity statistics data from the measurements, equation (1) 
may be used to extract the ijΠ  profile. This term is plotted 

in Figure 4 for the 7500Re =θ  
2DFPTBL in comparison 

with the DNS results of Spalart (1988) for 1410Re =θ . 
While it is very difficult to validate such measurements due 
to the lack of information that exists for  at high 

Reynolds numbers, the similarity of the data to the wall-
normalized DNS data gives confidence in the technique. 
Note that no profile smoothing has been used to obtain the 
results plotted. 

ijΠ

  Of even greater interest than the 2D case, the 3D attached 
turbulent boundary layer in the vicinity of a wing/body 
junction has been measured using the CompLDV. The 
geometry of the wing is a 3:2 elliptical nose joined at the 
maximum thickness to a NACA 0020 airfoil with a 
maximum thickness of 7.17cm. This particular flow was 
well-studied at Virginia Tech (Devenport and Simpson 
1990; Ölçmen and Simpson 1995; Simpson 2001). The 
complex flow includes a chaotic separated region very near 
the junction of the wing, a highly-unsteady horseshoe vortex 
that is formed at the leading edge of the wing/body junction, 
and span-wise pressure gradients that generate stream-wise 
vorticity and strong three-dimensionality even outside of the 
attached vortex region at station 5. 
  The present CompLDV data were acquired at station 5, a 
location reported in previous work, located at 
(x/t=0.026,z/t=-2.94), where x is in the stream-wise 
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direction and z is in the span-wise direction, both measured 
from the leading edge of the wing, and t is the maximum 
thickness of the wing. At this station, detailed, low-
uncertainty conventional 3-component LDV data exist 
(Ölçmen and Simpson 1995, 1996). For consistency, the 
current data are compared with those of Ölçmen and 
Simpson in Figures 5-7. Note that the data in Figures 5 and 
7 were reduced as volume-averaged statistics such that the 
effective measurement volume diameter for them was about 

mμ100 . The mean velocities in this particular boundary 
layer profile are given in Figures 5 and 6 with comparisons 
between present data and those of Ölçmen and Simpson in 
both cases. The presentation of data in Figure 6 is directly 
analogous to those measurements in the 2DFPTBL in 
Figure 1, where several y-positions of data are obtained for 
single measurement volume positions by separating 
measurements into bins according to particle y-position 
data. Clearly, the multi-velocity-component operation of the 
CompLDV is seen therein, and these data were used to 
determine the skin friction velocity via a fit to the coplanar 
velocity gradient (Tang 2004) to be , which 
compares favorably within uncertainties with the value 
determined by Ölçmen and Simpson of . In 

smu /20.1=τ

smu /15.1=τ

Figure 7, the Reynolds normal stresses corrected for 
velocity gradient broadening (Durst et al. 1995) are 
compared with the results of Ölçmen and Simpson and 
indicate that the flow conditions were faithfully repeated in 
the currently reported experiment.  
  The dissipation rate measurement technique has been 
applied to the data for the wing/body junction flow. The 
transport rate budgets were computed using these non-
isotropic dissipation rates and are presented in Figure 8. For 
these data, the boundary layer form of the Reynolds stress 
transport equations was considered such that only vertical 
gradients of Reynolds-averaged terms were computed. To 
obtain , the balance of equation (1) was obtained using 

the non-isotropic dissipation rates. As noted by many 
previous authors, there is a reduction in the nearwall 
turbulent kinetic energy (TKE) and Reynolds shear stress 
for a wide array of 3D TBLs and correspondingly in the 
TKE and shear stress production, the present flow included 
(Simpson 2005; Coleman et al. 2000; Moin et al. 1990; 
Ölçmen and Simpson 1996). In the present data, reduction 
of the near-wall TKE and Reynolds shear stress production 
(not plotted) is accompanied by reduced values of 

ijΠ

iiΠ  
compared with the 2DFPTBL (Figure 9). This same result 
has been observed by Moin et al. (1990) through DNS. 
Those authors postulated that the reduction of shear stresses 
in their pressure-driven 3D flow was due to mechanisms 
that suppressed the redistribution of turbulent energy 
through . The present results indicate that the stream-

wise term 11  is decreased from the 2DFPTBL case, 
though not as significantly as the production rate (Ölçmen 
and Simpson 1996). With reduced near-wall redistriubtion 
from the stream-wise normal stress and nearly zero 
redistribution of the span-wise normal stress that is being 
produced, the near-wall vertical normal stress receives less 
energy from those co-planar components. As noted by Moin 

et al. (1990), this mechanism of reduction of 

iiΠ
Π

2v in turn 
reduces production of shear stresses. The current data 
indicate a recovery of  and  to 2DFPTBL values 

above y

22Π 33Π

+=300, where uv  
shear stress levels reach 

approximately the same values as the 2DFPTBL (Ölçmen, 
M.S., and Simpson, R.L., 1996). 
 
 
CONCLUSIONS 
   A novel experimental technique is reported for obtaining 
velocity gradients using highly resolved particle trajectory 
data in turbulent boundary layer flows. Results for non-
isotropic dissipation rates in 2D and 3D turbulent boundary 
layers have been obtained. For the 2DFPTBL at 

7500Re =θ , the dissipation rate is anisotropic to 
approximatly the same viscous wall heights as in DNS for 

1410Re =θ . Measurements of the velocity/pressure-
gradient correlation have been obtained in a 3D TBL in the 
vicinity of a wing/body junction. As in the 2DFPTBL, much 
of the transport profiles for the span-wise and vertical 
normal stresses are dominated by the dissipation rate and 
velocity/pressure gradient correlations. The results indicate 
a magnitude reduction in the velocity/pressure-gradient 
correlation in the near-wall region for each of the Reynolds 
normal stresses. These results corroborate the DNS results 
of Moin et al. (1990), that reduced energy redistribution 
contributes to reduced shear stress magnitudes frequently 
observed in an variety of 3D TBLs. 
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Figure 1.Resolved profiles for the mean stream-wise velocity in 
viscous wall scaling. □, Current data for ; ○, Current 

data for ; ■, LDV data of DeGraaff and Eaton (2000) 

for . 

5930Re =θ

7500Re =θ

5160Re =θ
, DNS data of Spalart (1988) for 1410Re =θ

. 

The dashed line in this plot is the viscous sublayer relationship, 
. ++ = yU

 
Figure 2. Schematic of an instance for the CompLDV extrapolated 
measurement volume containing several particles with measured 

velocities and positions. Symbols defined in text. 

 
Figure 3.  Non-isotropic Reynolds stress dissipation rate in the 

2DFPTBL. C3, CompLDV data for ; DNS, 

simulation data of Spalart (1988) for . 

7500Re =θ

1410Re =θ

 
Figure 4. Velocity/pressure gradient correlation in the 2DFPTBL at 

7500Re =θ . C3, CompLDV; DNS, Simulation data of Spalart 

(1988). 

 
Figure 5. Mean velocities for the wing/body junction flow at station 

5. C3: CompLDV; Ö&S: Ölçmen and Simpson (1995). ‘Tunnel’ 
coordinate system xaxis is aligned with the inflow velocity vector 

and y-axis is normal-to-wall. 
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Figure 6. Sub-measurement volume resolution mean velocities for 
the wing/body junction flow at station 5. Symbols: □, τuU / ; ○, 

τuV / ; ◊, 
τuW /− . Open symbols are current CompLDV 

measurements; solid symbols are data of Ölçmen and Simpson 
(1995). Vertical dashed lines show center locations of measurement 

volume. Tunnel coordinate system. 

 

 
Figure 7. Reynolds normal stresses for the wing/body junction flow 

at station 5. C3: CompLDV; Ö&S: Ölçmen and Simpson (1995). 
Tunnel coordinate system. 

 

 
Figure 8 (a) 

 
Figure 8 (b) 

 
Figure 8 (c) 

Figure 8. Reynolds stress transport balances using the non-isotropic 
dissipation rates for the wing/body junction flow at station 5.        

(a) 
+

2u , (b) 
+

2v , (c) 
+

2w ,  

7PQ =Production; *PQ=Convection; +nij=Viscous diffusion; 
+Tij=Turbulent diffusion; εij=Dissipation rate; 

Πij=Velocity/pressure gradient correlation. Tunnel coordinate 
system. 

 
Figure 9. Comparison of 2DFPTBL (2D) and 3D TBL(3D) results 
for Πij..
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