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ABSTRACT

Measurements of the mean and fluctuating wall-shear stress in
fully developed turbulent pipe flow at Reynolds numberReb based
on the bulk velocity and the pipe diameterD ranging fromReb =

5000−20000 were performed using the micro-pillar shear-stress sen-
sor MPS3. The Reynolds number based on the skin-friction velocity
ranges fromReτ = 340 to 1150. The results demonstrate a convincing
agreement of the mean wall-shear stress obtained with the new sensor
technique with analytical and experimental results from the literature.
A first estimate of the pillar dynamic response will be derived and
first results from measurements of the fluctuating wall-shear stress in
turbulent pipe flow will be discussed and compared to results from the
literature.

INTRODUCTION

The assessment of the wall-shear stressτ = η ·∂u/∂y|wall has
been the subject of many experimental and numerical studies in the
last decades. Herein,η is the dynamic fluid viscosity,u the stream-
wise velocity andy the distance from the wall. The knowledge of the
mean wall-shear stress is a necessary prerequisite to determine the
friction velocity uτ = (τ/ρ)1/2 as one of the fundamental turbulence
scaling parameters. Herein,ρ is the fluid density. The temporal and
spatial shear-stress distribution is related to turbulent flow structures
in the vicinity of the wall and as such is of major importance for the
basic understanding of the development of near-wall turbulent events.

Recently developed wall-shear stress sensors can be divided into
two major categories based on the measurement principle, the so-
called direct and indirect techniques. Wall-implemented floating ele-
ments and oil-film techniques are the most common representatives
of the former technique. Indirect techniques require an empirical
or theoretical relation between the wall-shear stress and the quan-
tity measured by the sensor. Typically this relation is only valid for
very specific conditions. Comprehensive reviews on the development
of wall-shear stress devices are given by Löfdahl and Gad-el-Hak
(1999), and Naughton and Sheplak (2002).

Most existing sensors are one-directional devices that require the
necessity of secondary electronic structures to be implemented in the
wall, thereby impeding the spatial resolution and limiting the arrays
to a maximum number of sensors due to constructional constraints.
The micro-pillar shear-stress sensorMPS3 minimizes these problems
and enables an easy assessment of the spatial wall-shear stress distri-
bution.

DESCRIPTION OF THE MICRO-PILLAR SENSOR MPS3

The sensor principle is based on thin cylindrical structures, which
bend due to the fluid forces. The wall-shear stress is derived indi-
rectly from its relation to the detected velocity gradient in the viscous
sublayer. The pillars are manufactured from the elastomer poly-
dimethylsiloxane (PDMS) at diametersDp in the range of microns.
A single pillar is shown in figure 1(a).

The flexibility of the material ensures a high sensitivity of the
sensor. The low intrusiveness of the sensor due to the symmetric and
smooth curvature has been examined usingµPIV of the local flow
field around the pillar structure in Große et al. (2006). The results
showed the flow past the pillar to be well in the Stokes-flow regime
for most turbulent flows of interest.

The sensor concept allows the two-dimensional detection of fluid
forces, since the symmetric geometry has no preferred sensitivity di-
rection. Thus, the micro-pillar sensor technology enables to measure
the two wall-parallel components of the drag force. The optical detec-
tion principle leads to an extremely high local resolution of the planar
wall-shear distribution. The impeding limitation is the local distur-
bance of the flow field by the pillar structure and the interference of
neighboring pillars. However, due to the Stokes flow, there is only
a local impact on the flow field in a region of two to four diameters
downstream of the sensor (Große et al., 2006) such that an extremely
high spatial resolution can be achieved. There exist no additional
constraints due to the placement of necessary secondary structure or
data read-out devices. The sensor structure has a minimum dimen-
sion in the wall-parallel plane thereby reducing the spatial averaging.
For typical Reynolds numbers the dimension of the sensor in viscous
units isL+

p ≤ 1, whereL+
p = uτ Dp/ν, whereν = η/ρ.

To enable a sufficiently high sensitivity the sensor possesses an
optimum height under the restriction of the validity of the linear rela-
tion between the wall-shear stress and the near-wall velocity gradient.
That is, the sensor needs to be fully immersed in the flow field for
which the linear velocity gradient is guaranteed. For most turbulent
flows of low to moderate Reynolds numbers the height of the viscous
sublayer is in the order of 80 to 1000µm.

MECHANICAL MODELS FOR THE MPS3 SENSOR

Mechanical Model for Static Micro-Pillar Response

A mechanical model for the sensor often used is that of a clamped
cylindrical beam under linear shear load (figure 1(b)). In the follow-
ing, it will be shown that the simplifying assumptions are too rigorous
to describe the sensor behavior in linear shear flow making an exper-
imental static sensor calibration a necessary prerequisite.

The cylindrical sensor protrudes from the wall into the very near-
wall flow region and bends due to the fluid forces exerted on the
structure. Consequently, the sensor deflection, and hence, the sensor-
tip deflection, serve as a measure for the wall-shear stress. For wall
distancesy+ ≤ 5, i.e., within the viscous sublayer, the velocity gra-
dient is approximated by∂u/∂y = U(y)/y, and hence, the wall-shear
stressτ = η ·∂u/∂y|wall becomesτ = η ·U(y)/y.

To estimate the pillar bending, the mean forces exerted on the
cylindrical structure in plain shear flow can be calculated using the
Oseen-approximation for the drag load per unit length of the cylin-
der (Bairstow et al., 1923)

q(y) ≈ 4πη
2− loge(ReDp (y))

·U(y). (1)

525



Flow direction

    Linear

  velocity 

 gradient

w(y,t) , w’(y,t) , w’’(y,t)

x, x+

y, y+

z, z+

F
Drag

Fluid 

motion

E, I, D
P
, L

P

Figure 1: Scanning electron microscope images (left) of a single pillar
and (right)mechanical model of the pillar sensor.

Herein,γ = 0.577 is the Euler constant. Some authors derive a value
of q(y) = 4πη/ln(Lp/(2Dp)) ·U(y) for the drag force from the Os-
een approximation withLp being the sensor length. However, there
is no clear reasoning to further linearize equation 1 leading to this
simplified force term. Furthermore, the derivation of the Oseen drag
assumes an infinite cylinder length and as such the influence of the
cylinder lengthLp on the drag force is rather questionable.

The assumption of Oseen flow around the sensor structure is valid
as long as the Reynolds numberReDp = ULp Dp/ν defined by the pil-
lar diameterDp and the maximum velocityULp at the pillar tip, i.e. at
y = Lp, is ReDp ≪ 1, which is generally the case.

Assuming the sensor being represented by a one-sided clamped
cylinder bent by the viscous forces and a linear gradient of the mean
velocity in the viscous sublayer, the deflectionw(Lp) of the pillar tip
can be determined numerically

w′′′′(y) = (EI)−1 ·q(y) , (2)

by satisfying the boundary conditionsw′′′(Lp) = w′′(Lp) = w′(0) =

w(0) = 0. Figure 2(a) shows the theoretical deflection of the pil-
lar tip w(Lp) as a function of the maximum local Reynolds num-
berReDp (Lp) at the pillar tip. Note,ReDp (Lp) was kept≤ 1 to ensure
the validity of Oseen’s approximation for the drag force. The de-
flection in figure 2(a) evidences a slightly non-linear reaction of the
theoretical pillar deflection to a linear increase in the Reynolds num-
ber ReDp , i.e., to a linear increase of the velocity field along the
sensor structure. This non-linearity exists over the whole range of
0≤ ReDp (Lp) ≤ 1.

However, experimental results clearly showed a linear bending
of the pillar structure up to even high deflectionsw(Lp)/Lp during
rheometer calibration. That is, those measurements did not corrob-
orate the findings from the analytical estimate. Consequently, the
assumption of the pillar behaving like a clamped cylinder bent by the
fluid forces and following linear bending theory seems to be too rig-
orous. It is rather obvious that additional effects such as the stiffening
of the material due to the deflection from its straight position and a
lowering of the pillar tip as a consequence of the bending have to be
taken into account to obtain an appropriate mechanical model of the
pillar bending.

Thus, an experimental calibration of the pillar deflection is re-
quired to determine the relation between the mean wall-shear stress
and the pillar bending.

Static Calibration of the Sensor

The static calibration process is described in more detail in Große
et al. (2006). Here, only a brief overview is given. A calibration of the
micro-pillars can be performed in a plate-cone rheometer, since such
devices generate a plane linear shear flow with constant shear rate
over a sufficiently wide spatial region and velocity range such that the
drag force distribution exerted on the sensor structure is identical to
that in the viscous sublayer of a turbulent boundary layer.
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Figure 2: (left) Deflection of pillar tip as a function of the maximum
Reynolds numberReDp . Exemplary pillar-tip deflection (right) during
pillar calibration in plate-cone rheometer flow.

Probability density functions of fluctuating wall-shear stress in
turbulent flow evidence the maximum possible values to be about
three times as high as the mean wall-shear stress and hence, it is nec-
essary to perform a static calibration of the sensor up to such high
values. Since maximum mean wall-shear stress values in the order
of 0.85Pa are expected in the investigated pipe flow the static sensor
calibration was performed up to 2.5Pa.

The results of the static calibration in figure 2(b) demonstrate a
linear behavior between applied shear stress and pillar bending up to
extremely high rotation rates of the rheometer calibration device.

Mechanical Model for the Dynamic Micro-Pillar Response

To accurately capture the complete frequency spectrum with the
MPS3 sensor, it is necessary to know the frequency response func-
tion G( f ) of the sensor structure, wheref is the excitation frequency.
Since the static estimate has shown only some minor discrepancy be-
tween the theoretical approximation and the results from the static
calibration, the structure will in a first attempt be assumed as a one-
side clamped cantilever. The diameter of the pillar varies only slightly
along the pillar axis and can be assumed constant such that the cross
sectionA(y) = A, the second moment of inertiaI(y) = I, and the mass
distribution ρ ·A are uniformly distributed along the sensor length.
Consequently, the one-dimensional linear Euler-Bernoulli governing
equation of motion of the micro-pillar sensor can be expressed as

χ ·E ·I · ∂ 4

∂y4

(

∂w(y, t)
∂ t

)

+E ·I · ∂ 4w(y, t)
∂y4 +ρA · ∂ 2w(y, t)

∂ t2 = F(y, t) .

(3)

Herein, χ is the damping coefficient per unit length due to internal
viscous damping of the sensor material.w(y, t) is the lateral displace-
ment of the pillar sensor at a distinct heighty and timet. The term
F(y, t) on the right hand side of equation 3 represents the external
force per unit length and will be discussed in detail in the following.

With the assumption of the sensor structure being immersed in
the viscous sublayer, the flow field can be assumed to possess a linear
velocity gradient in the wall-normal direction and hence, to vary only
slowly along the pillar length leading to a two-dimensional flow field
in a wall-parallel plane. The local flow field and hence the forces
exerted on the sensor structure over an incremental length of the pillar
are consequently the same as the flow field around an infinitely long
rigid beam executing transverse oscillations with the same amplitude.

To achieve the frequency response function of the sensor structure
on an oscillating fluid excitation, the velocity field will be assumed to
perform a sinusoidal movement perpendicular to the primary axis of
the sensor at a constant frequency. Note, the fluid forces exerted on
the pillar structure depend on the relative velocity between sensor and
fluid, which can be expressed as
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Figure 3: Comparison of the second and third term in the mass coef-
ficient of thepillar equation of motion for water (left) and air (right)
as functions of the excitation frequencyf .

urel.(y, t) = ULp · y/Lp · ((sin2π f t +ξS)− ẇ(y, t)) . (4)

Herein,ULp is the local peak velocity at the edge of the viscous sub-
layer,ẇ(y, t) is the sensor velocity, andξS an arbitrary phase shift.

The resulting forces will be assumed using Stokes’ solution for
an infinite cylinder moving in viscous fluid with a sinusoidal veloc-
ity (Stokes, 1922). The forceF(y, t) per unit length exerted on the
cylinder is given by

F(y, t) =

{

4πµ · −g
g2 +(π/4)2

}

·urel.(y, t)

+

{

πρ f luid
Dp

2

4
+

µ
2π f

· π2

g2 +(π/4)2

}

· u̇rel.(y, t) , (5)

whereg = ln(s)+γ, s = Dp/4·
√

(2π f/ν), andγ = 0.577 is the Euler
constant. Note, the first term in equation 5 describes a drag force
resulting from dissipative effects due to the fluid viscosity, whereas
the second term can be interpreted as an additional mass added to the
pillar structure, which is proportional to the pillar acceleration.

To couple fluid and structural mechanics it is only necessary to
insert equation 5 into equation 3 for the pillar motion leading to

χ ·E · I · ∂ 4

∂y4

(

∂w(y, t)
∂ t

)

+E · I · ∂ 4w(y, t)
∂y4 +

{

πρPDMS
Dp

2

4
+πρFluid

Dp
2

4
+

µ
2π f

· π2

g2 +(π/4)2

}

· ∂ 2w(y, t)
∂ t2 +

{

4πµ · −g
g2 +(π/4)2

}

· ∂w(y, t)
∂ t

=

{

πρFluid
Dp

2

4
+

µ
2π f

· π2

g2 +(π/4)2

}

·UL · y/L · (sin(2π f t +ξS))+

{

4πµ · −g
g2 +(π/4)2

}

·UL · y/L ·2π f ·cos(2π f t +ξS) . (6)

This is a fourth-order differential equation forw(y, t), which
can be solved numerically using the boundary conditions
w|y=0 = ∂w/∂y|y=0 = 0 and∂ 2w/∂y2

∣

∣

y=L = ∂ 3w/∂y3
∣

∣

y=L = 0 .
Further simplifications are possible when regarding the terms in

equation 6. The first term in the mass term is due to the mass of
the pillar material, the second due to the mass of the displaced fluid.
It is obvious that the ratio of these two terms depends only on the
different densities of structure and fluid and hence, the second term
can be neglected when the pillar is used in air. On the other hand,
when the pillar is used in water, the fluid density is in the same order
of magnitude as the sensor density and has to be accounted for. The
third term depends on the excitation frequency and needs a further
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Figure 4: Power spectral densityΦ (left) of thepillar deflection in air
(upper) and water (lower). Time response (right) of the pillar to an
excitation.

investigation. In figure 3 the second and third term of the mass term
are juxtaposed and demonstrate that in water and air the third term
is at least one order of magnitude larger than the second term in the
relevant frequency range.

Approximate Pillar Dynamics

The detailed numerical solution of equation 6 will not be given
in this paper. A reduced order approximation of the pillar dynamics
will be given based on characteristic dynamic parameters, which have
been obtained experimentally.

It can be shown that the fourth-order partial differential equation
can be reduced to an ordinary second-order differential equation

∂ 2w(y, t)
∂ t2 +2D· (2π f0)

∂w(y, t)
∂ t

+(2π f0)
2 ·w(y, t) = 0 , (7)

the solution of which is well known. Herein,D is the damping
coefficient andf0 the undamped eigen-frequency. The damping co-
efficientD in equation 7 and the damped eigen-frequencyfD can by
found experimentally by determining the pillar step response. The
results in figure 4 show the damping coefficient to beD ≈ 0.07
in air and D ≈ 0.87 in water. The corresponding damped eigen-
frequencies arefD ≈ 2200 andfD ≈ 1100, respectively. Applying
f0 = fD ·

√

(1−D2) gives anf0 ≈ 2100−2200. The transfer func-
tion for a system described by equation 7 with a damping coefficient
0.7≤D ≤ 1 can in a first step be assumed approximately constant for
frequencies lower than 0.3−0.4 f0.

Since the maximum expected turbulent frequencies for the inves-
tigated Reynolds number range is approximately 800Hz they occur
in the regime of a constant sensor transfer function.

EXPERIMENTAL SETUP

Flow Facility

The experiments were performed in a pipe facility at the Insti-
tute of Aerodynamics. The pipe possesses a diameter ofD = 40 mm.
The fluid used in the measurements is deionised water atT = 20◦C.
During the measurements the temperature varies less than 0.1◦C. The
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Reynolds number based on the bulk velocityReb = UbD/ν is deter-
mined from the measured volume fluxV .

The flow enters through a flow straightener with 5 mm core size
followed by a 0.2 mm fine mesh. The straightener enters into the pipe
measurement section with a tripping device installed 40D upstream
of the measurement position. The tripping device consists of a cir-
cular ring generating a contraction ratio of 0.85. The fluid exits the
measurement section into an open reservoir and flows through a heat
exchanger to maintain a constant fluid temperature.

Particle-image velocimetry (PIV) measurements at Reynolds
numbersReb ranging from 5000−20000 confirm the character of the
fully developed turbulent pipe flow in the measurement section to be
consistent with experimental and numerical results from the literature.

For turbulent pipe flow values of the wall-shear stress are well
known, such that a comparison of the experimental results with the
data from the literature will allow to evaluate the capability of the
sensorMPS3 to determine the mean turbulent wall-shear stress. Gen-
erally, the wall-shear stress can be expressed by

τ = λρUb
2
/8 , (8)

whereλ is the friction factor. For turbulent flow in a smooth circular
pipe, Prandtl and von Karman (Schlichting (1958)) provide a formula
for the friction factorλ

1√
λ

= 2.0· log10

(

Reb

√
λ

)

−0.8 . (9)

This allows to easily determine the theoretical wall-shear stress for
turbulent pipe flow and also the Reynolds number based on the fric-
tion velocityReτ .

Micro-Pillar Sensor Setup

The micro-pillar sensor that is used for measurements of the wall-
shear stress is mounted in a 1mm cannula, which can be placed very
exactly through a hole in the pipe wall. Note, the maximum local
disturbance due to the flat surface of the sensor mount is≈ 3·10−4 D,
which corresponds to 0.17y+ at the highest Reynolds numbers in
the experiments, i.e., additional disturbances can be neglected. The
micro-pillar has a heightLp of 370 µm and a mean diameterDp of
approximately 20µm. The height corresponds to about 3-7 viscous
units for most Reynolds numbers in the experiments. Only at the
highest Reynolds numbers the sensor exceeds the viscous sublayer
with a height ofy+ = 10. However, the results in the following section
evidence the sensor to still correctly detect the value of the mean wall-
shear stress in pipe flow even under these conditions.

Optical Detection and Accuracy

The sensor displacement from a reference position at no veloc-
ity is observed using a highly magnifying macro lens mounted on a
Fastcam 1024 PCI high-speed camera. The setup in the experiments
matches that for the pillar calibration in the rheometer. The camera is
operated at 125 Hz and 2000 Hz. 51200 images are recorded for each
measurement at both recording frequencies resulting in a total period
of 7 min and 25sec respectively. During this timespan a particle with
bulk velocityUb travels a distance of 2600−5200D at 125Hz and
160−320D at 2000Hz depending on the Reynolds number.

With the magnification of the optical system the mean deflection
of the pillar tip ranges between 2−12 px depending on the Reynolds
number. The pillar tip can be detected as a bright single spot with a
diameter of 2−4 px on the recorded images. Two additional reference
spots on the sensor mount are used to correct a possible vibration of
the camera. Since the pillar tip represents a single spot the data is
correlated via a Gaussian template.

The evaluation is performed using PIV-correlation routines with
multi-passing. To test the accuracy under experimental conditions the
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Figure 5: Mean streamwise wall-shear stressτu (left) compared to
the solution calculated with formula 8 and 9. Ratio of the friction
velocityuτ (right) obtained experimentally with the proposed method
and the theoretical friction velocityuτtheo .

pillar position at zero flow with an artificially induced vibration was
evaluated. The vibration can be detected via identifying the move-
ment of the reference spots. With this procedure, the inaccuracy in
determining the pillar tip and the sensor mount is included. The re-
sulting rms value of the pillar deflection was 0.07px and the error to
determine the pillar-tip displacement becomes less than 2.5%.

RESULTS

Measurements of the mean wall-shear stress have been performed
for turbulent pipe flow at a variety of Reynolds numbersReb ranging
from 5000−20000. Data for the evaluation of the fluctuating wall-
shear stress have been recorded at four different Reynolds numbers
Reb = 10000,15000,17750, and 20000. First, the results for the mean
wall-shear stress will be discussed. In the following, a first outlook
on the determination of the fluctuating wall-shear stress will be given.
With the estimate for the pillar response, the pillar transfer function
was assumed to be constant in the complete frequency range.

Mean Wall-Shear Stress

In figure 5 the results from the present experimental study are
juxtaposed to values calculated by equations 8 and 9 for the friction
factor for turbulent flow in hydraulically smooth pipes. The results
show excellent agreement with the analytical estimates and evidence
the sensor to be capable of correctly detecting the mean wall-shear
stress in turbulent flows.

At the lowest Reynolds numbers in the experiments, i.e., for
Reb ≤ 10000, the data scatter around the theoretical value of the mean
wall-shear stress. This can also be observed in figure 5(b), where
the measured friction velocityuτ is compared with theoretical val-
ues calculated by equation 9. The higher error in the estimate of the
wall-shear stress is due to the very low values of the mean wall-shear
stress of≈ 0.1 Pa and the chosen optical resolution during the mea-
surements leading to a pillar-tip deflection in the order of 1−2 px and
hence, to an increased error in the estimate of the wall-shear stress.

The use of higher magnifying optics especially at low Reynolds
numbers would increase the optical resolution and hence, would allow
a higher accuracy of the system. Furthermore, the use of more slender
pillars with higher deflections would enhance the sensitivity of the
wall-shear stress sensor principle.

The results atReb ≥ 10000 scatter only slightly around the the-
oretical value of the mean wall-shear stressuτtheo and allow to de-
termine the mean wall-shear stress with an rms value of≈ 1.25% of
uτtheo under the current experimental conditions. The rms value cal-
culated from the results atReb ≥ 10000 is also plotted in figure 5(b).

Although the sensor with a height ofLp = 370µm partly exceeds
the viscous sublayer forReb ≥ 13000, the detected wall-shear stress
follows the predicted trend.
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Wall-Shear Stress Intensity, Skewness and Flatness

While the linearbehavior of the mean velocity gradient in the
viscous sublayer is commonly accepted, there are controversial results
and opinions on the fluctuation intensityu′/U in the literature, where
U is the mean streamwise velocity. Often a value ofu′/U

∣

∣

wall ≡
τu

′
/τu = 0.4 at the wall is assumed, whereτu is the mean wall-shear

stress. Note, the wall-shear stress and velocity fluctuations,τu
′
/τu

andu′/U , respectively, are directly related to each other in the vicinity
of the wall and as such can be directly compared.

The distribution of the fluctuations in the viscous sublayer is of
major importance for indirect measurement techniques. For channel
flow, Kreplin and Eckelmann (1979) report a value ofu′/U = 0.25 at
the wallwith a plateau aty+ = 3−6 and values ofu′/U = 0.36 to 0.37
before the fluctuationintensity decays. Wietrzak and Lueptow (1994)
compile several results from experimental studies and DNS results for
channel and boundary layer flow with values ofτu

′
/τu ranging from

0.1 to 0.4. Alfredsson et al. (1988) found the values ofu′/U to be
at a constant level of 0.4 up to values ofy+ = 4 in turbulent channel
flow, a trend that is also supported by the results obtained by Khoo
et al. (1997). For higher values ofy+, the authors report the rms value
to decrease to 0.33− 0.3. Numerical calculations for channel flow
performed by Moser et al. (1999) for Reynolds numbers ranging from
Reb = 5600 to 21000 showed the values to beτu

′
/τu = 0.38−0.4.

Figure 6(a) shows the measured rms valuesτu
′
/τu to be approx-

imately 0.39 for the streamwise component at the lowest Reynolds
number in the experiments and to decrease with the Reynolds num-
ber to values ofτu

′
/τu = 0.33−0.34 in the range ofReb = 10000 to

20000. The micro-pillar sensor protrudes further into the near-wall re-
gion at higher Reynolds numbers and this causes a spatial averaging
up to higher values ofy+, i.e., the observed decrease in the present
study is in good agreement with the findings of Khoo et al. (1997)
and Alfredsson et al. (1988). Consequently, it has to be taken into
account that the sensor integrates the flow field along the wall-normal
direction and hence, a gradient of any flow property along the sensor
length can hardly be detected. Therefore, at the present state, it cannot
be determined from the results obtained with the actual setup whether
or not the intensity of the wall-shear stress fluctuationsτu

′
/τu is con-

stant within the viscous sublayer. It can only be stated that the mean
value ofτu

′
/τu in the vicinity of the wall is represented by the values

noted above.

The measured spanwise componentτw
′
/τu in figure 6(a) is about

0.15 at the lowest Reynolds number in the experiments. At higher
Reynolds numbers the intensity decreases to values ofτw

′
/τu ≈ 0.13.

This is in good agreement with the findings of Kreplin and Eckel-
mann (1979). Their results show the spanwise component to reach
a maximum intensity ofτw

′
/τu = 0.2 at wall distancesy+ = 3− 4

followed by a strong decay to values of approximately 0.1. Note,
the pillar sensor tends to average the slope of the fluctuation inten-
sity τw

′
/τu and to underestimate the value in the vicinity of the wall.

Using smaller pillars withLp = 3−4 y+ would reduce this effect.

The skewness of the fluctuations in figure 6(b) isS f (τ) = 0.85 at
the lower Reynolds numbers and decreases slightly toS f (τ) = 0.6 at
higher Reynolds numbers. Values ofS f (u) ≈ 1.0 are reported in Al-
fredsson et al. (1988) and in Khoo et al. (1997) for hot-wires located at
y+ ≤ 4 whereas Fernholz and Finley (1996) report aS f (u) of 1.2÷1.3
in the near-wall region and a vanishingS f (u) at values ofy+ ≥ 12.

The findings for the flatnessFf (τ) in figure 6(b) show a similar
behavior. It reachesFf (τ) = 3.7 at lower Reynolds numbers and de-
creases to a value of 3.1 at higher Reynolds numbers. Similarly high
values are reported in Fernholz and Finley (1996) aty+ ≤ 4.

Note, the flatness and skewness of the velocity fluctuations are re-
ported to decay strongly with increasingy+. The decreasing skewness
and flatness at higher Reynolds numbers result from an inadequate
sensor length and an integration of fluctuations along the wall-normal
direction up to higher values ofy+.
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Figure 6: RMS values (left) of the streamwiseτu
′
/τu and spanwise

wall-shear stress fluctuationsτw
′
/τu. SkewnessS f (τ) and flatness

Ff (τ) (right) of the streamwise wall-shear stress fluctuationsτ ′u.

Frequency Spectra

The frequency spectra of the streamwise wall-shear stress fluctu-
ationsτu are plotted in figure 7. Spectral densitiesΦ+( f +) have been
calculated using the formula given in Press et al. (1992). For each
recording frequency the power spectra have been normalized such
that

∫ ∞
0 Φ+( f +)d f + = τu

′. The spectral densitiesΦ+( f +) and fre-
quenciesf + are scaled with inner and outer variables as well as with
a combination of both, i.e., a mixed scaling is applied.

It can be concluded from the results that mixed scaling pro-
vides the best collapse of the complete frequency spectra. The high-
frequency parts of the fluctuations collapse best for inner and mixed
scaling, whereas outer scaling leads to diverging spectral densities at
the high frequencies. The low-frequency parts of the fluctuations col-
lapse best for mixed scaling, whereas inner scaling causes a strong
spread of the spectral densities distributions at low frequencies. This
result is also reported by Alfredsson and Johansson (1984) and Jeon
et al. (1999) for spectral densities obtained experimentally and from
DNS of turbulent channel flow.

The question whether or not wall-shear stress or velocity fluctu-
ations in the near-wall region of turbulent boundary layers, i.e., the
buffer layer or low logarithmic region scale with inner or outer vari-
ables has very controversially been discussed.

Most authors applied inner scaling to their results from the buffer
region but it seems that mixed scaling would have rather led to the
Reynolds number independence of the data. Madavan et al. (1985)
shows results from skin-friction measurements in turbulent bound-
ary layer flow at different Reynolds numbers and assumes wall-shear
stress spectra to scale with inner variables. The spectral data pre-
sented contains only the low frequency end of the complete frequency
spectrum such that it is hard to know whether or not the applied scal-
ing also holds for the high frequency content of the turbulent fluctu-
ations. Alfredsson and Johansson (1984) report velocity fluctuations
in the buffer layer of turbulent channel flow at Reynolds numbersReb

between 13800 and 123000 to collapse best when mixed scaling is ap-
plied. The experimental results from Sreenivasan and Antonia (1977)
and Madavan et al. (1985) were juxtaposed by Jeon et al. (1999) and
evidence no reasonable collapse of the spectral densities in a Reynolds
number rangeReτ = 289− 3060 when inner or outer scaling is ap-
plied. As mentioned before this contradicts with the inner scaling
that Madavan et al. (1985) applied to their own data.

It can be suggested from the present results, that the use of mixed
scaling variables, which seems most reasonable as scaling parameters
for velocity fluctuations in the buffer region and further away in wall-
bounded flows, also applies for the wall-shear stress fluctuations over
the investigated Reynolds number range for turbulent pipe flow.

Nonetheless, it has to be kept in mind that the scaling of power
spectra is very sensitive to the determination of the correct friction ve-
locity. Furthermore, the experimental determination suffers strongly
from spatial averaging caused by an inappropriate dimension of the
detection devices, i.e., especially small scale structures are affected
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Figure 7: Power spectraΦ+ (left) and pre-multiplied power spectra
f +Φ+ (right) of τu as functions of the frequencyf + in inner, mixed,
and outer scaling at different Reynolds numbers.

by the integration of the turbulent signal along the sensor dimensions.

Pre-multiplied power spectra showingf +Φ+ versusf + are also
given in figure 7. This allows to easily recognize the frequency range
of the energy containing vortices. The results show a maximum in the
spectral powerf +Φ+ for inner scaling atf ν/u2

τ ≈ 10−2 and for outer
scaling atf δ/U0 ≈ 4−5·10−1.

CONCLUSION

A new sensor concept based on flexible micro-pillars to measure
the two-dimensional wall-shear stress distribution in turbulent flow
has been introduced. Results of the mean wall-shear stress in turbu-
lent pipe flow atReb ranging from 5000− 20000 are in convincing
agreement with data available from the literature. They evidence the
micro-pillar shear-stress sensor MPS3 to correctly detect the mean
wall-shear stress with an error of≈ 1.25% at the higher Reynolds
numbers in the experiments.

A rough estimate of the sensor based on experimental data has
been presented showing the sensor to have a constant dynamic trans-
fer function up to≈ 800Hz, such that the evaluation of the fluctuating
wall-shear stress in turbulent pipe flow at the investigated Reynolds
numbers could be performed. The preliminary results have demon-
strated convincing agreement with data from the literature.

The sensor needs no additional infrastructure on the wall and
possesses the advantage of very low flow interference. The sensor
concept is reasonably robust and can easily be mounted on almost
any surface. Pillars can be manufactured in a large diversity of aspect

ratios and heights enabling a perfect adaptation of the sensor to the
flow.
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