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ABSTRACT

Thermal plumes and their role for the heat transport in turbulent
Rayleigh–Bénard convection of air (Prandtl numberPr = 0.7) in a
cylindrical cell are investigated analysing data obtained from Direct
Numerical Simulations (DNS) and well-resolved Large-Eddy Simu-
lations (LES). DNS have been performed for the Rayleigh numbers
Ra = 106 and107 and aspect ratio of a cylindrical containerΓ = 5

and LES forRa = 108 andΓ = 5. Additionally a LES has been
conducted forRa = 109 andΓ = 1 to provide a high Rayleigh
number flow field for a parametrized plume analysis. It is shown that
the number of the thermal plumes increase with increasing Rayleigh
numbers while their size decreases. Further, temperature thresholds
are determined based on a thermal dissipation rate analysis, which are
used for plume extraction.

INTRODUCTION

Buoyancy driven turbulent convection in fluid layers between a
lower heated and a upper cooled plate which is usually denoted as
Rayleigh–Bénard convection (RBC) has been the subject of a number
of review articles, see for example Siggia (1994) or Bodenschatz et al.
(2000). Recently, the global heat transport and its dependences on the
Rayleigh numberRa = αgĤ3∆T̂ /(κν), PrandtlPr = ν/κ num-
ber and aspect ratio of the containerΓ = D̂/Ĥ have been studied
also theoretically by Otero et al. (2002) and Grossmann and Lohse
(2004)), experimentally by Funfschilling et al. (2005) and du Puits
et al. (2007) and in numerical simulation by Stringano and Verzicco
(2006) and Shishkina and Wagner (2006). Above,α denotes the ther-
mal expansion coefficient,ν the kinematic viscosity,κ the thermal
diffusivity, g the gravitational acceleration,∆T̂ the temperature dif-
ference between the bottom and the top plates,Ĥ the height andD̂
the diameter of the Rayleigh-Bénard cell.

From flow visualizations of turbulent RBC it is known that large
coherent structures develop which have mushroom-like form in the
bulk viewing from the side and a sheetlike shape from above (Funf-
schilling and Ahlers, 2004). These structures are called the thermal
plumes. Generally, these plumes are generated in the thermal bound-
ary layers close to the bottom or the top plate and are driven to
the opposite plate by buoyancy. It is also known that the sheetlike
roots (or ”mycelium theads”) of the plumes are located at the borders
between the boundary layers and the bulk or slightly deeper in the
bulk (Shishkina and Wagner, 2006). The temperature of the thermal
plumes differs significantly from the mean temperature of the back-
ground fluid. Due to the temperature difference between these large
flow structures and the surrounding fluid (and, hence, due to differ-

ent refractive indices in these parts of the fluid) the thermal plumes
become visible.

Although the thermal plumes are identified easily by eye in ex-
periments, the problem of their extraction is not satisfactorily solved.
Thresholds of certain quantities, i.e. the temperature (Zhou and Xia,
2002) and/or the vertical component of the velocity field (Juliem et
al., 1999), the skewness of the temperature derivative (Belmonte and
Libhacher, 1996) or the local thermal dissipation rate (Shishkina and
Wagner, 2006) have been usually used for plume identification so
far. But to properly determine a threshold value which separates the
large coherent structures from the background fluid is still an unsolved
problem.

In the present paper we suggest a new way to investigate the sheet-
like thermal plumes based on time-dependent three-dimensional flow
fields which we generated in Direct Numerical Simulations (DNS)
or well-resolved Large-Eddy Simulations (LES) of turbulent RBC.
In our study temperature thresholds for thermal plumes extraction
are determined in a thermal dissipation rate analysis. To demon-
strate the ability of our approach we present thermal plumes extracted
from LES data of RBC in air (Pr= 0.7) for the Rayleigh number
Ra = 109 and the aspect ratio of the cylindrical domainΓ = 1.

Further, we analyze the correlation between these plumes and the
local heat fluxes for various Rayleigh numbers to improve the under-
standing of the role of those plumes for and the dependences of the
Rayleigh number on the global heat transport.

GOVERNING EQUATIONS

The governing dimensionless momentum, energy and continuity
equations for the considered Rayleigh-Bénard problem read

ut + u · ∇u + ∇p = Γ−3/2Ra−1/2Pr1/2∆u + Tez ,

Tt + u · ∇T = Γ−3/2Ra−1/2Pr−1/2∆T, (1)

∇ · u = 0.

with the dimensionless variablesu the velocity vector-function,T the
temperature,ut andTt their time derivatives andp the pressure as
well as the unit vector in vertical directionez . To obtain these equa-

tions the reference velocitŷuref =
(

αgD̂ ∆T̂
)1/2

and the refence

lengthx̂ref = D̂ have been applied. The dimensionless temperature
varies betweenT |z=0 = +0.5 at the bottom andT |z=H = −0.5

at the top horizontal walls and satisfies∂T/∂n = 0 on the vertical
walls, wheren is the normal vector. On the boundary the velocity
field vanishes, i.e.u|∂Υ

= 0.
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To discretize equations (1) with respect to time we use the
leapfrog scheme for the convective termsu · ∇u andu · ∇T and
Euler-forward scheme for the diffusive terms∆u and ∆T as pre-
sented in Shishkina and Wagner (2004) while spatial discretizition of
equations (1) is based on a finite volume approach. For any compo-
nent of the velocity vector inβ-direction the equation (1) averaged
for any finite volumeV reads

〈
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β

〉

V
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〈

un−1
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〉
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where < · >V denotes averaging over a finite volumeV and δβ
z

the Kronecker symbol. Using Gauß–Ostrogradsky theorem and the
continuity equation, we reduce the convective and diffusive terms in
this equation to the following surface integrals
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In (2) and (3) |V | denotes the size andS the surface of the fi-
nite volumeV . Further,∆t stands for the time step, the subscript
n for the number of the considered time level,∆ϕ for the sec-
ond order partial derivative in the azimuthal directionϕ and µ =

Γ−3/2Ra−1/2Pr1/2. The discretization schemes for the energy
equation are constructed analogously. The surface averaged quanti-
ties in (2), (3) are computed from the volume averages ones using the
fourth-order approximation schemes in cylindrical coordinates pre-
sented in Shishkina and Wagner (2005, 2007).

SUBGRID SCALE MODELING AND MESH RESOLUTION

To compute the convective term (2) we need to approximate
〈uiuj〉S based on the velocity values〈ui〉S , where< · >S denotes
averaging over any surfaceS. For DNS the first term of the Fourier
series

〈uiuj〉S = 〈ui〉S 〈uj〉S +
1

12

∑

β

∆β2
∂ 〈ui〉S

∂β

∂ 〈uj〉S
∂β

+ O

(

∑

β

∆β4

)

is used to compute〈uiuj〉S . Here∆β is the mesh size in theβ-
direction. For LES the second term is additionally used according
to the tensor diffusivity subgrid-scale model by Leonard and Winkel-
mans (1999).

The conducted DNS (Ra = 106 andRa = 107 , Γ = 5) and
LES (Ra = 108, Γ = 5) were performed on staggered grids with
110 × 512 × 192 points in the vertical, azimuthal and radial direc-
tions, respectively, while the mesh used for the LES forRa = 109

andΓ = 1 consists of220 × 512 × 96 nodes. The grid points are
distributed equidistantly in the azimuthal direction and are clustered
in the vicinity of the rigid walls to resolve the viscous and thermal
boundary layers. Thus, close to the horizontal plates the size of the
finite volumes in the vertical direction is not more than 3.5%, 6.7%
and 14.1% of the corresponding thermal boundary layer thickness

λθ(Ra) = H/(2Nu)

(a)

(b)

(c)

Figure 1: Vertical distributions of the instantaneous temperature field
−0.5 ≤ T ≤ 0.5 for the Rayleigh numbersRa = 106 (a), 107 (b),
108 (c) andΓ = 5. The grey (color) scale ranges from black (blue)
for T ≤ −0.3 through white (T = 0) to grey (red) forT ≥ 0.3.

for the casesRa = 106, Ra = 107 andRa = 108 , respectively,
where

Nu = Γ1/2Ra1/2Pr1/2 < uzT >t,V +1, (4)

symbolizes the Nusselt number and< · >t,V time- and volume-
averaging.

The computational mesh used in the DNS forRa = 106 and
Ra = 107 is fine enough to resolve all relevant turbulent scales, if
the mean widthhVi

= (∆zi ri∆ϕi ∆ri)1/3 of any finite volume
Vi satisfies the inequality

hVi
≤ πηVi

(Ra), (5)

whereηVi
(Ra) is the Kolmogorov scale at the location of the finite

volumeVi. For the dimensionless system (1) the Kolmogorov scale
equals

ηVi
(Ra) = µ

3/4

1
< ǫu >

−1/4

t,ϕ (6)

and depends on the vertical and radial coordinates,z andr. Hereǫu

is the turbulent kinetic energy dissipation rate and< · >t,ϕ denotes
averaging in time and in the azimuthalϕ-direction. It is well-known
that the turbulent kinetic energy dissipation rate peaks in the close
vicinity of the rigid walls. In these regions the Kolmogorov scale and,
hence, the mesh width are small, while in the the bulk they are larger.
Evaluating the values of< ǫu >t,ϕ andηVi

from the DNS data for
the casesRa = 106 and107 we obtain

π−1 max
Vi

{hVi
η−1

Vi
(106)} ≤ 0.41,

π−1 max
Vi

{hVi
η−1

Vi
(107)} ≤ 0.81.

Therefore it is concluded that the computational mesh used in the
DNS satisfies the resolution requirements both in the bulk and in the
vicinity of the walls. It must be further noted that even for the LES,
which we performed forRa = 109 , we obtain

π−1 max
Vi

hVi
η−1

Vi
(109) ≤ 1.56

indicating that this simulation is also well-resolved.

INSTANTANEOUS AND MEAN FLOW FIELDS

In Fig. 1 and Fig. 2 snapshots of the temperature fields in ver-
tical and horizontal planes highlight the complex three-dimensional
thermal plumes which are generated in the thermal boundary layers
and are driven by buoyancy. With growing Rayleigh number the
characteristic size of these plumes decreases while their number in-
creases. The distribution of the instantaneous temperature fields in

494



(a) (b) (c)

(d) (e) (f)

Figure 2: Horizontal distributions of the instantaneous temperature field−0.5 ≤ T ≤ 0.5 for z = 0.5H (a − c) andz = H/(2Nu) (d− f) and
the Rayleigh numbersRa = 106 (a, d), 107 (b, e), 108 (c, f) andΓ = 5. The grey scale (color) scale ranges from black (blue) forT ≤ −0.3

through white (T = 0) to grey (red) forT ≥ 0.3.

(a) (b) (c)

Figure 3: Horizontal distributions of the mean axial velocity< uz >t (a), the mean temperature< T >t (b) and the mean convective heat flux
< uzT >t (c) in the center horizontal cross-section forz = H/2, Ra = 107 andΓ = 5. The grey (color) scale ranges from black (blue) for
negative values, through white (zero) to grey (red) for positive values.

Fig. 2(d−f) in a horizontal plane located close to the heated bottom
plate reflect large scale structures denoted in Shishkina and Wagner
(2006) as the roots of the thermal plumes. Increasing the Rayleigh
number (Fig. 2(d) to Fig. 2(f)) these roots become thinner and their
number increases.

For the statistical analysis time-averaging< · >t was performed
for more than 43, 110 and 59 dimensionless time units forRa equals
106, 107 and108, respectively. ForRa = 107 andz = H/2 the
time-averaged fields of the temperature< T >t, axial velocity<

uz >t and the vertical convective heat transport< uzT >t are
presented in Fig. 3. For the case of the presentedRa-numberRa =

107 the mean flow rises through a diametral stripe and descends in
two regions close to the vertical wall. Contrary to this, for the lower
Rayleigh number (Ra = 106) the mean flow is organized in more
rolls, while a convection cell with upflow in the center is obtained for
the higher Rayleigh numberRa = 108 (not shown).

INSTANTANEOUS AND MEAN HEAT FLUXES

Although both, the time- and/or horizontal area-averaging in
cross-sectionSz of the heat fluxes leads to the same Nusselt num-

Figure 4: Regions of negative (Ω < 0, dark grey (blue)) and large
positive (Ω ≥ 2Nu, bright grey (yellow)) local heat flux valuesΩ
obtained forRa = 106 andΓ = 5.

berNu, the local heat flux

Ω = Γ1/2Ra1/2Pr1/2uzT − Γ−1 ∂T

∂z
(7)

is varying in space and in time. A perspective view of heat flux iso-
surfaces obtained forRa = 106 is presented in Fig. 4. It is observed
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Figure 7: Sketch of a thermal plumeP (given in grey) with the thick-
nessδP , diameterDP , curvatureKP and plume angleϕP .

that a large part of the domain is characterized by high (≥ 2Nu) local
heat flux valuesΩ but in up to one third of the Rayleigh-Bénard cells
volume the local heat fluxes are negative.

Evaluating thze global heat flux in terms of the Nusselt numbers
(4) leads toNu = 8.16 for Ra = 106, Nu = 15.54 for Ra = 107,
Nu = 32.95 for Ra = 108 and Nu = 67.07 for Ra = 109.
These values are in good agreement with those obtained by Niemela
et al. (2000) and by Wu and Libchaber (1992), who reportedNu =

0.124Ra0.309 for Γ = 0.5 andNu = 0.147Ra0.287 for Γ = 6.7,
respectively.

Further, we investigate the spatial distribution of the instantaneous
heat fluxes using the DNS and LES data. In Fig. 5 contours of the
instantaneous vertical heat fluxes are plotted together with superim-
posed velocity vectors forRa = 107 and different distances from the
bottom plate.

In the center horizontal cross-section (Fig. 5a) regions of high
values ofΩ correspond to fluid moving predominantly in vertical di-
rections (indicated by the velocity arrows, which reduce to dots in
Fig. 5a). These regions are zones of clustered plume stems (see
Shishkina and Wagner, 2006) around which the fluid can move ro-
tationally.

In the vicinity of the bottom plates (Fig. 5c), regions with com-
parably large values of the local heat fluxΩ are observed mainly near
the vertical wall, where the fluid moves from the centers of cold plume
caps in all possible horizontal directions. At the borders between the
thermal boundary layers and the bulk (Fig. 5b), fluid which is charac-
terized by high local heat flux values can move in both, the horizontal
directions (like in near the horizontal wall region in Fig. 5c) and in
the vertical directions (like in the center horizontal cross-section in
Fig. 5a)).

Comparing the snapshots of the local heat flux in Fig. 5, which are
taken at different distances from the horizontal and vertical walls, one
concludes that the presense of the rigid walls influences significantly
the spatial distribution of the instantaneous heat flux.

SHEETLIKE THERMAL PLUMES EXTRACTION

To investigate sheetlike thermal plumes a LES of turbulent
Rayleigh-Bénard convection of air (Prandtl numerPr = 0.7) for
Ra = 109 has been performed since for this high Rayleigh number
the plumes are difficult to detect visually.

Snapshots of the temperature field (Fig. 5a) and the thermal
dissipation rate (Fig. 5b) in a horizontal plane located at the bor-
der between the upper cold thermal boundary layer and the bulk
(z = 0.5H/Nu) give an impression of the characteristic three-
dimensional flow structures of turbulent RBC.

To determine the temperature threshold which separates the ther-
mal plumes from the background fluid we investigate the temperature
dependences of the thermal dissipation rate. For a fixed horizontal

ǫθ

1

−1
−0.5 0 0.5

T

Figure 8: Distribution of the thermal dissipation rate evaluated for
Ra = 109, Pr = 0.7, Γ = 1 and distancesz = 0.5H/Nu (——),
z = H/Nu (– – –), z = H/2 (——• ), z = H(1 − 1/Nu) (- - -)
z = H(1 − 0.5/Nu) (– · –) from the top plate.

cross-sectionSz within the cylindrical Rayleigh-Bénard cell and tem-
perature values within a given interval[Tk, Tk+1[ we calculate the
thermal dissipation rateǫθ as follows

ǫθ = Cǫθ
〈ǫθ ϑ(Tk ≤ T < Tk+1)〉t,Sz

,

whereθ(Tk ≤ T ≤ Tk+1) = H(T − Tk) − H(T − Tk+1) with
H(x) the Heaviside function and the normalizing constantCǫθ

.
In Fig. 8 the obtained values of the thermal dissipation rate (eval-

uated forRa = 109, Pr = 0.7, Γ = 1) are presented for different
distances from the top plate. Large absolute values of the tempera-
ture in Fig. 8 are associated with interior of the thermal plumes, while
those around zero correspond to the background fluid. The borders
between the thermal boundary layers and the bulk (z = 0.5H/Nu

andz = H(1 − 0.5/Nu)) are the most interesting regions, since
there the sheetlike plumes develop. Solid lines in Fig. 8 correspond
to z = 0.5H/Nu. It is observed that within the temperature in-
terval −0.4 ≤ T ≤ 0 the thermal dissipation rate (Fig. 8d) has
a well-pronounced extermum which corresponds to the temperature
thresholdT−

thr
used to extract the sheetlike plumes at the border be-

tween the upper cold thermal boundary layer and the bulk.

GEOMETRICAL PROPERTIES OF SHEETLIKE PLUMES

In the horizontal cross-sectionsSz located atz = H(1 −
0.5/Nu) and z = 0.5H/Nu from the top plate, warm and cold
sheetlike thermal plumes are identified as subdomains ofSz , re-
stricted by the plume temperature thresholdsT+

thr
andT−

thr
, as fol-

lows

P+ = {(x) ∈ Sz : T (x) ∈ [T+

thr
, 0.5]},

P− = {(x) ∈ Sz : T (x) ∈ [−0.5, T−

thr
]}.

Here the vertical coordinatez and timet are omitted andx = (x, y).
In Fig. 5(c) the cold sheetlike plumes, which were extracted at the
border between the upper themal boundary layer and the bulk (with
a distancez = 0.5H/Nu from the top plate), are presented. The
corresponding snapshot of the temperature field is shown in Fig. 5(a).

In our plume analysis we neglect those thermal plumes with a
relative area

AP = |P|/|Sz|

of less than2× 10−4, where|P| and|Sz| denote the areas ofP and
Sz , respectively. The plume diameterDP is defined as the maximum
distance between any two points inP , and varies between 0 and 1
(see Fig. 7 for a schematic sketch of a sheetlike thermal plume and its
geometrical characteristics).

The plume vectoraP =
(

x∗

1
− x∗

2
, y∗

1
− y∗

2

)

of the lengthDP

has a direction such thatey × aP points upwards, forey being the
unit vector in they-direction. Thus, the angleϕ

P
between the plume

vectoraP and the unit ordinate vectorey varies in the interval[0, π].
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Ω
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(b)
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Figure 5: Snapshots of local heat fluxes obtained forRa = 107, Pr = 0.7, Γ = 5 andz = 0.5H (a), z = H/(2Nu) (b) andz = 10−3H (c).
Close-up views with superimposed velocity vectors are presented on the right.

(a) (b) (c)

Figure 6: Snapshots of the temperature field(a), the thermal dissiaption rate(b) and extracted thermal plumes(c) in the horizontal cross-section
z = 0.5H/Nu obtained forRa = 109, Pr = 0.7 andΓ = 1. The grey scale ranges from black (negative values in(a) and positive values in
(b)) to white (positive values in(a) and zero in(b)).

The plume direction and its diameter are determined, respectively, by
the direction and the length of the vectoraP .

To determine the curvature of the plumeP we consider each
non-degenerate triangle with the vertexes(x, y) ∈ P ,

(

x∗

1
, y∗

1

)

and
(

x∗

2
, y∗

2

)

and the side lengthsDP and

DP,β =
(

(x∗

β − x)2 + (y∗

β − y)2
)1/2

, β = 1, 2.

The plume curvatureKP ,

KP = |P|−1

∫

P

kP (x, y) dP,

is defined then as the quantitykP (x, y) averaged over the sheetlike
plumeP , where the value ofkP (x, y) is inversely proportional to the
circumradius of the considered triangle,

|kP(x, y)| = D−1

P
D−1

P,1
D−1

P,2

((

DP + DP,1 + DP,2

)

(

−DP + DP,1 + DP,2

)

×
(

DP − DP,1 + DP,2

)

(

DP + DP,1 − DP,2

))1/2
.

The quantitykP (x, y) is positive only if the point(x, y) is situated
on the right of the plume vectoraP , i.e. (x∗

1
− x∗

2
)(y − y∗

2
) <

(x − x∗

2
)(y∗

1
− y∗

2
), and non-positive otherwise.
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Figure 9: Probability density functions of the logarithms of the fol-
lowing geometrical characteristics of the thermal plumes: area(a),
diameter(b), thickness(c) and curvature(d), evaluated forRa =

109, Pr = 0.7, Γ = 1 and distancesz = 0.5H/Nu (——) and
z = H(1 − 0.5/Nu) (– – –) from the top plate.

Generally, the absolute value of the plume curvatureKP does not
exceed2D−1

P
. The curvature of a straight-line plume equals zero,

while that of a plume with the shape replicating the boundary of the
horizontal cross-sectionSz equals±2.

Further, we consider the apical angleαP of the isosceles triangle
with the vertexes

(

x∗

1
, y∗

1

)

,
(

x∗

2
, y∗

2

)

and the circumcenter of the
considered plume. Then the plume thicknessδP and the plume length
lP are defined as follows

δP = α−1

P
KP |P|, lP = αPK−1

P
,

where the apical angleαP equals

αP = arccos

(

1 − (KPDP )2

2

)

.

In Fig. 9 the probability density functions of the logarithms of the
plume area, diameter, curvature, thickness and aspect ratio evaluated
for Ra = 109, Pr = 0.7, Γ = 1 and distancesz = 0.5H/Nu and
z = H(1 − 0.5/Nu) from the top plate are presented. It is shown
that the defined geometeric properties are reasonably distributed in
turbulent RBC.

CONCLUSIONS

Analysing DNS- and LES-data of Rayleigh-Bénard convection
for Ra = 106, 107 and108, Prandtl numberPr = 0.7 and aspect
ratio Γ = 5, it was shown that the number of thermal plumes in-
creases with the Rayleigh number while their size decreases. These
plumes play an important role for the heat transport. In regions of
high values of the local heat flux in the vicinity of the bottom or the
top plates (Fig. 5c) the fluid moves predominantly from the centers
of thermal plume caps towards their borders in all possible horizontal
directions, while in the center horizontal cross-section (Fig. 5a) these
regions correspond to the vertical movement of the fluid through the
plume stems around which the fluid can move rotationally.

Further, a new method for plume extraction and a way to
parametrize these plumes was presented and tested analysing LES
data of RBC forRa = 109 , Pr = 0.7 andΓ = 1.
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