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ABSTRACT 
Stably and unstably thermally stratified fluid layers are 

often encountered in practice ranging form environment to 
industry. There are examples of counter gradient heat fluxes 
occurring in such fluid layers containing a combination of 
both types of stratification. Simple standard heat flux 
models as employed e.g. in the k-ε-σt framework need to be 
improved for representing such behaviour of the turbulent 
heat fluxes. More complex algebraic models or even in 
some cases the full transport equations for the turbulent heat 
fluxes are therefore required. There, the triple correlation 

Tuu kj ′′′  appears as an important closure term in the 

turbulent diffusion. Usually, this is modelled following the 
Daly and Harlow approximation, which has already been 
found to be not sufficiently accurate in buoyant flows. 

In this paper, the transport equation for this triple 
correlation will be analyzed using Direct Numerical 
Simulation (DNS) data of two different flow types, for a 
internally heated fluid layer (IHL) and for Rayleigh-Bénard 
convection (RBC). Based on this study a Reynolds-
Averaged Navier Stokes (RANS) model for the above 
closure term will be derived. Finally, this will be validated 
using the DNS data of both RBC and IHL which have 
different Rayleigh (Ra) and Prandtl (Pr) numbers. 

 
 

INTRODUCTION 
It is well known that k-ε-σt type turbulence models need 

improvement for numerically investigating fluid flow 
involving both unstable and stable thermal stratification. 
One problem occurs in the turbulent heat flux model: The 
turbulent Prandtl number σt that is widely considered to be 
constant, depends on many parameters, e.g. here in stratified 
flows especially on the Richardson number 
(Venayagamoorthy et al. 2003). As often counter gradient 
heat fluxes are involved, more complex heat flux models 
need to be used. These are, e.g. algebraic approximations as 
in Launder (1988) or second order models basing on 
transport equations for the turbulent heat fluxes like 
summarized by Launder (1989) and for liquid metal flows 

in Carteciano and Grötzbach (2003). In the second order 
models, the triple correlation Tuu kj ′′′  appears as an 

important closure term in the turbulent diffusion. 
The other problem occurs in the turbulent shear stress 

model, because all models are basing on the k-equation 
which needs improvement for partially stably stratified 
flows: Following suggestions by Moeng and Wyngaard 
(1989) a way to improve the standard model by introducing 
buoyancy effects in the modelling of turbulent diffusion of k 
has been discussed in Chandra (2005). Considering the 
unusual dominance of the pressure term in the k-diffusion in 
RBC with or without imposed shear effects as shown by 
Domaradzki and Metcalfe (1988) and Wörner and 
Grötzbach (1998), a separate model for the pressure-
velocity fluctuation correlation has been derived by Chandra 
and Grötzbach (2006). Using the transport equation for the 
velocity-fluctuation triple correlation its buoyancy-extended 
model is obtained by Chandra and Grötzbach (2007). There, 
the triple correlation Tuu kj ′′′  also appears as closure term in 

the buoyancy contribution.  
To deduce an improved model for this triple correlation, 

in the next section the flow features in IHL and RBC are 
discussed. These flows are used as vehicles for investigating 
this higher order correlation. The subsequent section will be 
presenting the derivation of the model for this triple 
correlation basing on a detailed study of its transport 
equation using DNS data. Finally, a validation of the 
derived model will be presented. 

 
 

FLOW TYPES AND MODELLING REQUIREMENTS 

DNS specifications 
In this section some of the salient features of IHL and 

RBC analyzed from DNS data are presented. In RBC, the 
fluid layer between two infinite horizontal isothermal walls 
is heated uniformly from below and cooled from above. In 
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IHL the fluid is internally heated by a uniform volumetric 
energy source and cooled by keeping both walls at a lower 
temperature than the fluid confined in-between; see the 
time-mean temperature profiles in figure 1. 

The external Rayleigh number for RBC is 
( )νκγ /DTgRa wE

3∆=  and the internal Rayleigh number for 

IHL is ( )νκλγ /Dq gRa vI
5= , where g  is the gravity 

acceleration, γ  is the volume expansion coefficient, wT∆  is 
the wall temperature difference, D  is the wall distance, vq  
is the volumetric heat source, λ  is the thermal 
conductivity, ν  and κ  are the diffusivities for momentum 
and thermal energy, respectively. The Prandtl number of the 
fluid is κν /Pr = . Hereafter, external and internal Rayleigh 
numbers are referred to as Rayleigh number Ra . 

The three-dimensional time-dependent TURBIT code, 
see Grötzbach (1987), which is based on a finite volume 
method has been employed for performing and analysing 
the DNS of RBC and IHL. Results obtained are already 
intensively used and validated for RBC in different fluids, 
e.g. in Grötzbach (1983), Wörner (1994), and Otić et al. 
(2005), and for IHL e.g. in Grötzbach (1987), Wörner et al. 
(1997), and Chandra (2005). A review on the details of the 
convective heat transfer in IHL is given by Kulacki and 
Richards (1985). The IHL may be considered as a 
representative of flow behaviour e.g. in chemically 
exothermal reactive flows, in nuclear reaction driven flows 
in stars, or even in the convective planetary boundary layer. 
Consequently, models that are developed for IHL may be 
adapted to numerical investigations e.g. of environmental 
and of certain chemical process flow problems.  

For analysing the DNS results, homogeneity is assumed 
in the horizontal planes 21 XX − ; thus, the statistical 
averaging is computed over these planes and over time. 
Such quantities are denoted by an over-bar ( ) . In all 

figures this is represented by . The fluctuation computed 

by using this average is indicated by ( )″ . 
Consequently, the heat transfer in each fluid layer 

reduces to a one-dimensional problem depending only on 
the vertical co-ordinate 3X . Also there is no horizontal 
mean flow, therefore the mean shear vanishes. For length 
scale the fluid layer height D , for temperature scale the wall 
temperature difference wT∆ , for velocity scale 

2/1
0 )( DTgu w∆= γ , and for pressure scale ( )2

0uρ  is used 

with ρ as the density. In IHL wT∆  means its maximum 
value across the height of fluid layer. This is estimated 
apriori using the Damköhler number, see e.g. Grötzbach 
(1987). The present scaling results in 

Pr/Re 0 RaGrDu === ν . In this study, the time 
averaged turbulent kinetic energy and its dissipation are 
denoted by E′ and ε ′  instead of k  and ε , respectively. 

 
DNS analysis of IHL and RBC 

Table 1 gives the specifications for the DNS that are the 
basis for numerically investigating the two different buoyant 
flows, IHL and RBC. 

 
Table 1: DNS specifications. 

 
Flow type Ra Pr Source 

IHL 107 7 Wörner et al. (1997) 
IHL 109 7 Chandra (2005) 
RBC 6.3*105 0.71 Wörner (1994) 

 
 
The table reveals that the above DNS are performed for 

water (Pr = 7) and air (Pr = 0.71). Their validations are 
available in the respective sources. In the figures IHL with 
Ra= 107, 109 and RBC with air are represented by IHL7, 
IHL9 and RBCA, respectively.   All these DNS follow the 
spatial resolution requirements as proposed by Grötzbach 
(1983). Special attention has been given to avoid truncation 
of large scales by the periodic boundary conditions which 
are used in the horizontal directions. 

The vertical statistical mean temperature profiles of IHL 
and RBC are shown in figure 1. In this and subsequent 
figures X3=1 and X3=2 indicate the positions of the lower 
and upper walls, respectively. This figure depicts the 
increase in temperature along the height in case of IHL that 
attains its maximum close to the upper wall. Therefore, 
most of the height of the fluid layer is stably stratified and 
only a small portion of the fluid layer close the upper wall is 
unstably stratified. The unstable stratification drives the 
vertical heat and momentum exchange, whereas the stable 
stratification attenuates this process. The standard k - ε  
type RANS models are found to be not suitable for 
accounting such damping effect of stable stratification, see 
e.g. Davidson (1990). In RBC the decrease in temperature 
along the vertical direction reveals that the fluid layer is 
everywhere unstably stratified.  

The vertical profile of the statistical turbulence kinetic 
energy in figure 2 demonstrates its strong in-homogeneity in 
IHL even at this high Ra. This is consistent with the strong 
damping effect in stable stratification. In RBC, this is 
almost homogeneous along the height of the fluid layer 
away from the near wall regions.  
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Figure 1: Vertical profiles of the mean temperature 

analyzed from DNS; IHL9(○), RBCA(♦). 
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One of the important features of these flows can be 
explained based on their vertical profiles of the mean 
temperature in figure 1 and of the statistical turbulent heat 
fluxes as shown in figure 3. This reveals, indeed most of the 
height of the fluid layer in IHL is having a counter-gradient 
heat flux, which was already discussed in Grötzbach (1987) 
for a lower Ra. Whereas in RBC the statistical turbulent 
heat flux is almost homogenous, leaving the near wall 
regions. Nevertheless, the standard gradient diffusion heat 
flux model even fails to predict this homogeneous flux in 
RBC, see e.g. in Otić and Grötzbach (2007). 

 
 

MATHEMATICAL MODELLING 

Modelling concept 
The most general models, which should reproduce 

counter gradient heat fluxes, are second order models like 
introduced e.g. by Donaldson (1973) or like it is used in a 
CFD code by Carteciano and Grötzbach (2003) in 
combining a first order low-Reynolds number k - ε  model 
with a full second order turbulent heat flux model. In the 
transport equations for the turbulent heat fluxes the 
turbulent diffusion appears as one of the closure terms. This 
consists of the partial derivatives of a triple correlation of 
velocity-temperature fluctuation Tuu kj ′′′ and of a pressure-

temperature fluctuation correlation Tp ′′ . Usually they are 
modelled together by the Daly and Harlow (1970) 
approximation for the triple-correlation by almost 
neglecting the contribution from the pressure term as 
indicated in Launder (1989). It has already been shown by 
Chandra (2005) in modelling the analogous turbulent 
diffusion of kinetic energy that the involved pressure 
correlation term needs special attention in buoyant flows. 
Keeping this requirement and the statistical homogeneity of 
the considered fluid flows in view, the present paper 
describes one way to improve the Daly and Harlow model 
for a separate modelling of Tu j ′′2 , along the vertical 
direction indicated by  j=3. 

Following simplifications are used for deriving the 
model for Tu ′′23 : 

A: The flow types are horizontally homogeneous and 
there is no horizontal mean flow so that these flows are 
shear free in the current averaging method.  

B: The cross-correlations of the velocity fluctuations are 
smaller than their auto-correlations, i.e. 2

jji uuu ′<<′′  for 

 ,ji ≠ 3 ,2 ,1, with =ji . 
 

Daly and Harlow model 
The Daly and Harlow (hereafter referred to as DH) 

model for Tu ′′23  using simplifications A and B becomes:  
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Generally, θC  is considered as constant coefficient 

with a value between 0.05 and 0.11. On the other hand Dol 
et al. (1997) had shown that this is not a constant and even 
can attend much higher values. A similar behaviour is 
observed by Wörner et al. (1997) in which they found that 
this coefficient needs to be increased by almost 100 times in 
IHL at Ra= 108. The analysis of our DNS data for RBC and 
IHL reveals that indeed the DH model needs both 
qualitative and quantitative improvement in these flow 
types, see figure 5. Further on, there are indications in 
literature that the involved coefficient may even depend on 
parameters like turbulent Reynolds number, tRe ( )εν ′′=

2
E . 

Thus, there are possibilities to improve the existing DH 
model as given in equation 1.  

 
Analysis of transport equation 

As a first step in the derivation of the model for Tu ′′23 , 
its transport equation (2) as given in Dol (1998) has been 
analyzed using DNS data of IHL and RBC at different Ra 
and Pr. All the terms except the production due to Reynolds 
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Figure 2: Vertical profiles of the mean turbulent kinetic 

energy analyzed from DNS; IHL9(○), RBCA(♦). 
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Figure 3: Vertical profiles of the mean turbulent heat flux 

analyzed from DNS; IHL9(○), RBCA(♦). 
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stresses and convection are closure terms. These two terms 
reduce to zero using the present statistical averaging. 
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(2) 

Production due to the Reynolds stresses and turbulent 
heat fluxes (ProS), the turbulent transport (TurbT) and the 
dissipation (D) are generally used for deriving the DH 
model for heat fluxes as given in equation (1). Additionally, 
there are terms which can be significant in the different flow 
types. Therefore, all the terms in equation (2) that remain at 
the steady state are analyzed as shown in figure 4. 

The figures also include the budget or out of balance of 
this equation which is calculated using all terms. This term 
is smaller than most other terms. This confirms that the flow 
is nearly fully developed, that equation (2) should be 
correct, and that the equation is also numerically correct 
realized in the analyzing software of the TURBIT code 
system. 

The investigation of the other terms depicts the 
difficulty involved in classifying the terms in the transport 
equation, e.g. the production and dissipation show positive 
and negative contributions in certain regions. Thus, a 
separation of important terms by the formal classification 
may not be very useful for modelling. It can be inferred that, 
unlike the transport equations for second-order correlations, 
the equation for third-order correlations poses more 
challenges in modelling the involved closure terms. The 
only practical way of their approximation is to identify 

those terms which may have higher importance based on 
their DNS analysis. This strategy has been employed in the 
present case.  

The production due to Reynolds stresses and turbulent 
heat fluxes (ProS) and the turbulent transport (TurbT) have 
higher significance in RBC than in IHL. In accordance with 
the strong temperature gradient (see figure 1) the respective 
production term ProT is important close to the walls in both 
flows. The contributions of buoyancy (ProB) and 
dissipation (D) are comparable in IHL. The significance of 
pressure-transport (Dput) and strain (Pdut) near the walls in 
RBC can be justified to both the presence of a local region 
of high pressure fluctuations and of the turbulent heat flux. 
Special attention should be given to the molecular 
contribution (M) in the near wall region. The occurrence of 
1/ Pr  in the molecular (M) and dissipative terms (D) shows 
that their contribution will be enhanced in liquid metals, see 
equation (2). Therefore, these observations reveal that in 
addition to the production due to Reynolds stresses (ProS), 
turbulent transport (TurbT) and dissipative terms (D), the 
production due to the temperature gradient (ProT), 
buoyancy contribution (ProB) and molecular terms (M) 
should be included in a model for Tu ′′ 2

3  .  
 

Modelling of Tu ′′ 2
3  

In order to obtain the RANS model for Tu ′′ 2
3  using its 

transport equation as given in equation (2), beside the 
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Figure 4: Vertical profiles of all terms in equation (2) for 

IHL and RBC analyzed from DNS; ProS(▪), -ProT(○),  
-TurbT(x), ProB(+), Mol(◊), Pdut (◄), -Dput(-), -Diss(▼) 

and Budget(∆). 
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simplifications A and B following assumptions are 
employed: 

- As the flow types are shear free, convection and 
production due to mean shear vanishes. 

- Following a similar approach as in Hanjalić and 
Launder (1972) the pressure term (P) is modelled as in 
Rotta (1951) and the Dissipative terms (D) are modelled as 
a relaxation term as in Zeman and Lumley (1976), 

 

,
2

3

τ
Tu

CDP
′′

−≈−  with C as a coefficient. 

  
Here, ετ ′′= E  is the typical turbulence time scale.  

-  The higher-order correlation in the turbulent transport 
TurbT is modelled as in Hanjalić and Launder (1972). 

- As a first extension, the contribution of buoyancy 
ProB and production due to temperature gradient ProT will 
be introduced analogous to the turbulent diffusion of the 
temperature variance as in Dol et al. (1999). 

- Considering high Re  and moderate Pr  the molecular 
terms (M) are not included. 

- Assuming fully developed convection in the steady 
state, introducing the above simplifications in equation (2) 
and rearranging results in: 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′−
∂
∂′+

∂

′∂
′′+

∂

′′∂
′

′

′
′−≈′′

2
32

3

3
3

3

2
3

3
3

32
3

1
2

3

PrRe
2

2

TuRa
x
Tu

x
u

Tu
x
Tu

u
ECTu
ε

θ  (3) 

 
In equation (3) CC 1~1θ′  is a coefficient. Considering 

the observations of Dol et al. (1997), Wörner et al. (1997) 
and Chandra (2005), β

θθ tCC Re11 ≈′  with 52.0≈β  and 
25.01 ≈θC  is used here. This dependence is consistent with 

the directions by Daly and Harlow (1970) and by Launder 
(1989). This model (3) will be referred to as Daly and 
Harlow Extended (DHE) model. The DH model as in 
equation (1) contains only the first two terms on the rhs of 
the DHE model. The DHE model also includes the 
production due to the mean temperature gradient and the 
contribution of buoyancy. In this model the last two closure 
terms involve the higher-order correlations 3

3u′  and 2
3Tu ′′ . 

The first one may be modelled according to Launder (1989). 
An improved model for the other closure term has been 
derived by Otić et al. (2005), which is validated with DNS 
data of RBC at different Pr. 

 
 

VALIDATION 
The DNS data at different Ra and Pr for the discussed 

flows are used for the validation of the extended DHE 
model for the triple-correlation in the turbulent diffusion of 
the turbulent heat flux. The DNS results for the triple 
correlation are given in Chandra and Grötzbach (2007). 
Here, the partial derivative of this term is used for 
evaluation as it appears in the heat flux diffusion term. The 
coefficient 11.0≈θC  is used in the DH model. For the 

DHE model the employed model coefficients are already 
discussed. The comparisons in figure 5 clearly indicate that 
considerable improvement is achieved in these flows with 
the extended model over the standard gradient 
approximation. The simple model produces not only 
quantitatively wrong diffusion data, but produces even a 
qualitatively wrong vertical distribution in IHL. In this flow 
type the extended model shows better qualitative and 
quantitative prediction except close to the lower wall. In 
RBC the DHE diffusion model reveals its better 
acceptability near the walls. 

 
 

CONCLUSIONS 
The simple gradient approximation for turbulent heat 

fluxes has limited application and accuracy for purely 
buoyant convection, especially while dealing with counter 
gradient heat fluxes. Consequently, attempts are still 
ongoing to derive more accurate models. In certain 
buoyancy driven flows, for example in the atmosphere, even 
the full transport equations for the heat fluxes may be 
preferred. This involves turbulent diffusion as one of the 
closure terms in which a triple correlation of the velocity-
temperature fluctuation correlation appears. In this paper an 
extended version of the Daly and Harlow model for this 
closure term is derived. Subsequent validation reveals its 
better predictive capability compared to the simple gradient 
diffusion model. The developed extension requires an 
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Figure 5: Profiles of the partial derivatives of triple correlation 

and its modelled values from equations (1) and (3) for IHL 
and RBC analyzed from DNS; DNS (▪), DH (○) and DHE (∆). 
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additional modelled transport equation for 2
3u ′ , e.g. by 

Launder et al. (1975), and a closure for 2
3Tu ′′ , e.g. by Otić 

et al. (2005). Thus, even the modelled heat flux equations 
require special assumptions accounting for the large 
anisotropy which are inherent to buoyant flows.  

The discussed DHE model for Tu ′′23  also occurs in the 
buoyancy extended diffusion model for the k  equation, see 
Chandra and Grötzbach (2007). This means, the new DHE 
model not only allows for better treatment of the turbulent 
diffusion in all second order heat flux models, but also for a 
better modelling of the turbulent energy diffusion in all k -
based turbulence models. Thus, this improved modelling is 
of major importance in buoyant flow calculations. 
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