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INTRODUCTION

Accurate LES simulations can only be achieved if the nu-

merical contamination of the smaller retained flow structures

is taken into account as well as the subgrid parameterization

(Geurts and Fröhlich, 2002). The interaction of the numer-

ical and the modeling error complicates quality assessment

procedures or uncertainty estimators of LES even further.

This topic has recently been discussed in the literature (Ce-

lik et al., 2005; Chow and Moin, 2003; Geurts and Fröhlich,

2002; Klein, 2005; Kravchenko and Moin, 1997; Meyers et al.,

2003; Hoffman, 2004). Klein (2005) proposed to evaluate the

numerical as well as the modeling error using an approach

based on Richardson extrapolation, where it is assumed that

the modeling error scales like a power law.

Recently this method has been applied to several flow

cases, like channel and free-shear flows and so far very en-

couraging results have been obtained using 2nd order CDS

as discretization scheme. However, most commercial solvers

able to handle complex geometries are not strictly second

order accurate and often they are based on upwind biased

schemes. Therefore it is extremely important to assess the

applicability of the method to these schemes. The focus of

this work is to investigate the method using a more diffusive

numerical scheme, e.g. QUICK (Quadratic Interpolation for

Convective Kinematics). As the model equations presented

by Klein (2005) allow to distinguish between modeling and

numerical uncertainty, their interaction can be studied, also

with respect to the error components obtained by the CDS

calculations.

The next section will introduce the method, originally

proposed by Klein (2005) and recently extended by Freitag

and Klein (2006). Subsequently the scaling exponent will

be evaluated which is a necessary requirement to solve the

model equations. The method will be applied to a strongly

swirling, recirculating flow and to a channel flow.

CONFIGURATIONS AND NUMERICAL TECHNIQUE

Two configurations will be studied within this contribu-

tion. The first configuration will be the well known channel

configuration at a Reynolds number of Reτ = 395, based on

the wall friction velocity, cf. Moser et al. (1999). The ex-

tension of the computational domain in axial x, spanwise y

and vertical z direction is 12δ× 6δ× 2δ similar to Kim et al.

(1987), where δ is the channel half width. The computa-

tional domain is resolved with 128× 64× 32 grid points. All

boundary conditions and further details are given in Klein

(2005); Freitag and Klein (2006).

The second configuration will be a strongly swirled

isothermal flow case where experimental data and corre-

sponding DNS data can be taken from the literature (Schnei-

der et al., 2005; Freitag and Klein, 2005; Freitag et al., 2006).

The experimental setup consists of a movable block type

swirler which feeds an annulus from where the airflow enters

the measurement section at ambient pressure and temper-

ature. The Reynolds number (5000) is calculated from the

bulk velocity and the bluff-body diameter. The geometrical

swirl number is set to S=0.75. The extension of the compu-

tational domain in axial x, and radial r direction is 12D×8D.

The computational domain is resolved with 360× 128× 120

grid points.

The governing equations for the flow configurations in-

vestigated are the conservation equations of mass and mo-

mentum for an incompressible Newtonian Fluid in their

instantaneous, local form. The equations are solved by us-

ing a finite volume technique. All variables are located on

a staggered Cartesian grid for the channel flow and an a

cylindrical mesh for the swirl flow respectively. For spatial

discretization of convection upwind biased schemes, namely

a QUICK scheme, are used, while temporal discretization

is accomplished using an explicit third order Runge-Kutta-

method. Former results using a 2nd order CDS scheme will

be used as reference for a quantification of the influence com-

ing from the numerical scheme (Freitag and Klein, 2006).

The Poisson equation is inverted by using a direct fast ellip-

tic solver.

THEORETICAL DERIVATIONS

A common way to assess the quality of CFD simulations

in the context of RANS is to perform grid refinement studies,

based on variants of the Richardson extrapolation (Roache,

1998). This is to some extent problematic for implicit filter-

ing since both, numerical and modeling contribution scale

with the filter width. In addition, the modeling and numer-

ical errors interact which will question the terminology of

a grid independent LES. Strictly speaking, implicit LES is

only the solution to a set of differential equations on the dis-

cretized grid, since the model contribution depends on the

grid spacing. This makes the verification of LES based on

grid refinement studies difficult.

Ways out for this dilemma have been collected recently

in the review of Celik et al. (2006). Klein (2005) studied

the sensitivity of the simulation results on the modeling and

numerical error contributions separately. The method re-

quires two additional simulations to assess the results of the

initial LES: One will be a grid variation and the second uses

a modified model contribution. Intuitively it is clear that

from such a model variation, the influence of the sgs param-

eterization can be assessed at least qualitatively.

To illustrate the idea, it is assumed in the following that
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the contribution from the numerical error (n) and the contri-

bution from the model term (m) are given by the right hand

side of a Taylor expansion (1) and that the leading order

terms of both contributions are independent. The reasoning

behind the structure of the model equation is given in the

work of Klein (2005) in great detail and will not be repeated

here.

The set of equations where u denotes the exact solution,

u1 the standard LES solution, u2 the LES solution with a

modified model contribution, and u3 the solution obtained

on a coarse grid, can be expressed in the following form,

u − u1 = cnhn + cmhm (1)

u − u2 = cnhn + αcmhm (2)

u − u3 = cn(βh)n + cm(βh)m. (3)

Equation (2) is the equivalent of a simulation where

the model contribution was modified by a certain factor α.

Coarsening or refining a grid by a factor of β, where e.g. grid

halving is equivalent to β = 2 leads to equation (3). The idea

that the modeling error scales like a power of ∆ originates

in the pioneering work of Lilly (1967). The exact scaling can

be obtained by equating the mean square of strain S and its

spectrum. The scaling for the resolved stresses can then be

deduced as S ∼ ∆−2/3 (Pope, 2000; Sagaut, 1998).

Combining equations (1)-(3) the error contribution can

be split into model (4) and numerical error (5). The total

error is the sum of both (see equation (6)).

(u2 − u1)/(1 − α) = cmhm (4)

(u3 − u1) − (u2 − u1)(1 − βm)/(1 − α)

1 − βn
= cnhn (5)

u3 − u1 + (u2 − u1)(βm − βn) (1 − α)

1 − βn

= cnhn + cmhm (6)

Labeling equation (4) as modeling error might be mis-

leading since it does not represent the classical model error.

Rather, it represents the uncertainty introduced through the

model on the particular grid with respect to the DNS. A

more conservative approach to estimate the error was pre-

sented in the work of Freitag and Klein (2006). They addi-

tionally introduced the triangle inequality, |cnhn +cmhm| <

|cnhn|+ |cmhm|, to prevent partial cancellation of the indi-

vidual errors which might occur if they are of opposite sign.

Therefore it is suggested to use the conservative variant pre-

sented in equation (7) to estimate the uncertainty.
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= |cnhn| + |cmhm| (7)

Independent which of the two variants is chosen, the sys-

tem of equations is under-determined, since only three equa-

tions were formulated for five unknowns (u, n, m, cm, cn). To

keep the method feasible it is suggested to make an assump-

tion for the scaling exponents, rather than expanding the

system of equations.

The scaling of the numerical scheme is usually known

to the user through the numerical accuracy of the specific

code. A 2nd order CDS and a 3rd order QUICK scheme

will be applied to the method. In combination with a 2nd
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Figure 1: Logarithm of the ratio of the turbulent viscosities

taken from simulations on two grids with a refinement ratio

of two – νc
T corresponds to the coarse grid and νf

T
to the

fine grid, respectively.

order integration of the finite volume method the numerical

scaling is assumed to be equal 2.

The determination of the scaling exponent of the model

term will be subject of the following section involving ideas

already presented in Klein et al. (2006).

QUANTIFICATION OF THE SCALING EXPONENTS

Equation (1) assumes that the model error scales with

the power of h. Using four sets of simulation results, Ce-

lik et al. (2005) determined the scaling exponent m to be

approximately 2, i.e. a second order dissipation error. The

theoretical dissipation error scales like ∆2/3 (Pope, 2000;

Sagaut, 1998).

The Smagorinsky approach takes advantage of Prandtl’s

mixing length hypothesis (Prandtl, 1925) to model the eddy

viscosity,

τsgs
ij ≈ 2νT ˜Sij (8)

νT = (Cs△)2
√

2˜Sij ˜Sij (9)

Consistent with the observation τij ∼ ∆2/3, the the-

oretical scaling for the eddy viscosity is νT ∼ ∆4/3 and

Sij ∼ ∆−2/3. This will be easily checked a posteriori in a

two grid study. At this point the procedure of Klein et al.

(2006) is adopted where the scaling exponent was calculated

through a comparison of the averaged turbulent viscosities

of the calculation.

Figure 1 presents the log ratio of the turbulent viscosities

on two different grids, coarsened by a factor of two. Re-

sults are presented for CDS and QUICK simulations of the
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complex swirling flow configuration at Re = 5000. As a gen-

eral feature, the ratio of the turbulent viscosities is roughly

constant in the regions of fully developed turbulence, but

fluctuates in the shear layer and in the outer, laminar re-

gions. For regions of fully developed turbulence the scaling

for both, CDS and QUICK simulation, is almost identical.

However at the outer radii, where the flow laminarizes m

increases for the CDS and decrease using a QUICK scheme.

This can be explained with different spreading angles of the

simulation on the coarse and fine grid. Furthermore the

spreading angle is influenced by the numerical scheme which

leads to the different course of the curves.

From figure 1 it can be concluded that νT ∼ ∆5/3 seems

to be a reasonable approximation. A calculation of the log

ratio of the turbulent viscosity (9) for laminar flows will lead

to log2(νc
T /νf

T ) = 2 since Sij will be identical on both grids.

This will only hold true for the Smagorinsky model but not

for its dynamical variant where the constant will be zero

in laminar flow regions. Hence a range is spanned between

4/3 . . . 5/3, where the upper limit corresponds to moderate

Reynolds numbers (Re ≈ O(102 − 104) and the lower limit

to high Reynolds numbers.

This implies that S̄ ∼ ∆−2/3 . . . ∆−1/3 and hence τij ∼
∆2/3 . . .∆4/3, i.e. m = 2/3 . . . 4/3 which is within the ex-

pected range as explained above. The value m = 4/3 is

used in the following section because of moderate Reynolds

number flows.

APPLICATION TO THE SWIRLING FLOW

The error of the mean stream-wise velocity is plotted for

one half of the domain in figure 2 showing both the predicted

error (upper part) using the model equations (1)-(3) and the

true error as difference between the DNS solution and the

assessed LES (lower part). Even the color scaling is not

identical in both plots, some key features can be identified.

These are in detail an increasing error in the shear layers

and a diminishing deviation from the ideal solution in the

outer flow region, where the flow is supposed to be almost

laminar. Note that the solution of the coarse grid and also

the DNS solution was interpolated onto the LES mesh, hence

the lower part of the figure appears to be much smoother

compared to the predicted error on the upper half of the

picture.

1 2 3 4 5 6 7 8 90

Figure 2: Contour-plot of the error-distribution for the

swirling flow. Predicted Error (upper part) and true error

as deviation from the corresponding DNS data (lower part).

A more quantitative comparison is presented in figure 3

where the results of the procedure given by equation (7) are

compared to the real error calculated as absolute value of

the difference to the DNS data. The overall course for the

mean velocity deviation is predicted quite precise, especially

at x = 30mm and further downstream. However, a signif-

icant over-prediction can be monitored close to the axis at

x = 10mm and x = 60mm. Inspecting the particular er-

ror contributions at figure 4 (top) it becomes obvious that

the conservatism of the triangle inequality leads to this over-

prediction. Otherwise the opposite sign of the numerical and

modeling error contribution would cancel the total error at

these regions.
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Figure 3: Application of the procedure given in equation (7)

to the QUICK simulation to estimate the deviation for the

mean stream-wise velocity (top) and the tke (bottom).
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Nevertheless the authors recommend the use of the mod-

ified procedure, presented in Freitag and Klein (2006), due

to the conservatism of this variant. A similar well behavior

of the method can be found for the assessment of the turbu-

lent kinetic energy (tke), see figure 3 (bottom). Nevertheless,

some deviations can be identified for the maximum values

at x = 10mm, x = 30mm and x = 60mm. The general trend

and the absolute level of the simulation error is captured,

even not as perfect as the method predicted the error using

a 2nd order CDS as convective discretization scheme, see

Freitag and Klein (2006).

Discussion of the Separated Error Contributions

The individual error distribution can be calculated with

the help of equations (4) - (6). Results of the QUICK calcu-

lations are presented at figure 4, corresponding CDS results

are plotted at figure 5. A comparison of the modeling and

the numerical error for the QUICK simulation yields that

the larger error contribution comes from the model term

and not from the numerical terms. This unexpected fact

can be interpreted as follows. Local oscillations of the CDS

scheme will be compensated by a higher turbulent diffusiv-

ity νt. The numerical error of the less dispersive QUICK

scheme behaves like an additional diffusion hence the turbu-

lent diffusivity νt needs no further increase.
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Figure 4: Distribution of the individual error contributions

for the QUICK prediction.

An interesting feature for the CDS calculation is the

correlation between the real error and the modeling contri-

bution. Another significant observation for the CDS calcula-

tion is the similar magnitude of the two error contributions

together with the opposite sign, so roughly cnhn = −cmhm

is given. Such trends can not be identified for the QUICK-

LES besides very few exceptions. Hence the relation and the

interaction between numerical and modeling error seems to

be less connected, here.
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Figure 5: Distribution of the individual error contributions

for the CDS calculation.

The overall deviation from the DNS data increases for

the QUICK simulation especially at the core of the jet

(x = 10...30mm) whereas the prediction is of similar quality

further downstream. These deviations are visible for the

kinetic energy where the QUICK scheme predicts overall

higher values than the DNS and the CDS simulation (fig-

ure 6).
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Figure 6: Radial profiles of the resolved turbulent kinetic

energy, given at different axial heights.
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This is to some extent surprising since the higher dif-

fusivity of the numerical scheme should reduce the level of

predicted kinetic energy. A possible explanation refers to

the existence of the highly energetic coherent structure. A

visualization of the PVC using pressure iso-levels, not shown

here, reveals that the extent of the structure is larger for the

QUICK simulation. Furthermore it is known from earlier

studies (Freitag and Klein, 2005) that the bulk of the ki-

netic energy is directly related to the coherent motion and

not to turbulent fluctuations. Therefore an over-prediction

of the kinetic energy is explicable despite the usage of a more

diffusive scheme.

APPLICATION TO THE CHANNEL FLOW

Task of this section is to incorporate the method to

analyze the result of a simulation using the QUICK dis-

cretization for a channel flow at moderate Reynolds number,

Reτ = 395.

The simulation results are compared to DNS data and

former CDS calculations (Klein, 2005). Presented in figure

7 are mean values (top) and corresponding fluctuations (bot-

tom) of the stream-wise velocity component. The solid and

dashed lines belong to the results of the CDS calculations

and the lines with points involving the same line style depict

the results of the corresponding QUICK simulations. For

the simulation using a Smagorinsky constant of CS = 0.1

the results differ only slightly, however for a reduced model

constant CS = 0.05 the QUICK simulation notedly over-

shoots the DNS results. Obviously the QUICK simulation

possesses a high sensitivity to the constant Cs whereas the

CDS results are more independent from Cs.
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Figure 7: LES results using different Smagorinsky constants

and convective schemes. The upper figure illustrates the

mean stream-wise component, whereas the lower picture

presents the prediction of the corresponding fluctuations.

The superiority of the CDS scheme becomes more per-

spicuous by inspecting the fluctuations of the stream-wise

velocity components, at the lower part of figure 7. For a

reduced model constant CS = 0.05 the CDS results yield a

reasonable close agreement to the DNS but both QUICK

simulations fail to predict the position and the shape of

the shear layer fluctuations. Even though a reduction of

Cs leads to a steepening of the shear layer, the result de-

viates considerably from the DNS. Noticeable, the QUICK

predicts generally higher absolute values for the wall shear

layer. Flow visualizations reveal that the turbulent struc-

tures are much larger for the more diffusive scheme which

leads directly to a higher fluctuation level.
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Figure 8: Application of the method given in equations (4) -

(6) (top) and the conservative variant of (7) (bottom). Pre-

dictions for the mean of the stream-wise velocity component

are presented.

Despite the fact that a simple comparison with the cor-

responding CDS-LES calculation evinces already a reduced

prediction quality of the QUICK-LES, the methods of Klein

(2005) and Freitag and Klein (2006) will be applied, also.

Again the focus is put on the mean (figure 8) and fluctua-

tions (figure 8) of the stream-wise velocity. The upper figures

illustrate the particular contributions of equation (5), and

the lower figures present results using the conservative ap-

proach, given in equation (7).

Compared to the results obtained with a CDS calculation

(Freitag and Klein, 2006) the model behaves less optimal for

upwind biased numerical schemes. Even though the course

of the error contribution is predicted well the absolute value

differs. The summation of the error from the model contribu-

tion and the numerical error yields a strong under-prediction

for the total error, calculated as difference to DNS data.

This is primarily due to the fact that the magnitude of both

errors are almost identical over the entire range of the chan-

nel. In combination with an alternating sign this leads to a

cancellation through the summation of the segregated error

contribution. This is also the reason why the rectified con-

servative method over-predicts the absolute error (figure 8

top).

Improvement of the results can naturally be achieved by

a modification of m and n, however we like to put this aside,

to keep the universality of the procedure. The agreement

between the error for the fluctuations and the deviation from

the DNS data is similar to the mean quantity. Again the

basic features i.e. the strong discrepancies at the shear layer
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Figure 9: Application of the method given in equations (4)

- (6) (top) and the conservative variant of (7) (bottom).

Predictions for the fluctuations of the stream-wise velocity

component are presented.

are captured, but the magnitude is predicted less accurate.

CONCLUSIONS AND OUTLOOK

A method to assess the quality of LES has been applied

to a free swirling flow and a channel flow, using different nu-

merical schemes, i.e. 2nd order CDS and QUICK schemes.

The positive side-effect of the method is the separate avail-

ability of the numerical and the modeling error distribution.

Concluding it can be stated that the method works

slightly worse for a more diffusive numerical scheme com-

pared to former CDS predictions. The reason for this devi-

ating behavior might be the fact that a mixed discretization

has been used, i.e. a QUICK scheme for the convective terms

and a CDS scheme for the diffusive terms. However the

method displayed once more that a simplification to an error

predictor relying only on a single grid refinement is prob-

lematic since the errors interact and more drastically they

appear to be of similar magnitude. A comparison between

the CDS and the QUICK results yields that the difference is

quite strong for a wall bounded flow at moderate Reynolds

number and is almost invisible for an unconfined swirling

flow.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support

by the DFG SFB 568 (project D3).

REFERENCES

I. Celik, Z. Cehreli, and I. Yavuz. Index of resolution quality

for large eddy simulations. J. Fluids Eng.-Trans. ASME,

127(5):949–958, 2005.

I. Celik, M. Klein, M. Freitag, and J. Janicka. Assessment

measures for URANS/DES/LES: An overview with appli-

cations. Journal of Turbulence, 7(48):1–27, 2006.

F. Chow and P. Moin. A further study of numerical er-

rors in large-eddy simulations. Journal of Computational

Physics, 184:366–380, 2003.

M. Freitag and M. Klein. Direct numerical simulation of

a recirculating, swirling flow. Flow, Turb. Combust., 75

(1-4):51–66, 2005.

M. Freitag and M. Klein. An improved method to assess the

quality of large eddy simulations in the context of implicit

filtering. Journal of Turbulence, 7(40):1–11, 2006.

M. Freitag, M. Klein, M. Gregor, D. Geyer, C. Schneider,

A. Dreizler, and J. Janicka. Mixing analysis of a swirling

recirculating flow using DNS and experimental data. Int.

J. Heat Fluid Flow, 27:636–643, 2006.
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