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ABSTRACT

A variational multiscale large eddy simulation (VMLES)

based on an h-type scale separation is derived. Within this

method, a standard Smagorinsky model is applied to the

smaller of the resolved scales in order to account for the

effect of unresolved scales. The larger resolved scales do not

contain any modeling term. To separate large and small

resolved scales, two grids of different characteristic length

are introduced – a fine grid for the resolved scales and a

coarser grid for the identification of the large resolved scales.

The application of the method to turbulent flow in a diffuser

shows the good features of the VMLES already for relatively

coarse resolutions. Additionally, a tool based on Fourier

analysis is derived, enabling a straightforward classification

of scale-separating procedures based on a one-dimensional

test equation.

INTRODUCTION

In many engineering problems, one faces the need to ex-

amine the motion of fluids. A mathematical formulation

of the fluid motion is provided by the Navier-Stokes equa-

tions. Since no analytical solution is known for most flows,

numerical simulation is an essential tool for the study and

prediction of real flow situations, particularly for turbulent

flows. The coupling of all scales in the flow makes it neces-

sary to examine the whole range of active scales. Though,

the more turbulence is in the flow, the larger gets this range.

Hence, a direct numerical simulation (DNS) resolving all

scales is usually not a viable approach. One alternative to

overcome this problem is large eddy simulation (LES), where

only larger scales are resolved, whereas the effect of the un-

resolved small scales on the resolved larger scales is modeled.

Traditional LES approaches do not yet perform satisfacto-

rily for certain applications. A very promising approach

towards an improved LES is the variational multiscale large

eddy simulation (VMLES), see, e.g., Hughes et al. (2000)

and Gravemeier (2006b). In the VMLES, only the effect of

the unresolved scales on the smaller of the resolved scales is

modeled, whereas no modeling term is added to the larger

of the resolved scales. In this paper, a VMLES suitable for

use within both a finite element and a finite volume method

is presented in a finite element setting, with the separation

between large and small resolved scales realized by an h-type

approach. Afterwards, an application of such an h-type scale

separation within a finite volume method to turbulent flow

in a planar asymmetric diffuser is described. Furthermore,

a Fourier analysis in a simple 1D setting is carried out.

NAVIER-STOKES EQUATIONS AND VMLES

Incompressible Navier-Stokes Equations

The objective is to solve the Navier-Stokes equations for

incompressible flow in a bounded, connected domain Ω: Find

a velocity field u and a pressure field p such that

∂u

∂t
+∇ · (u⊗ u)− 2ν∇ · ε(u) +∇p = f (1)

∇ · u = 0 (2)

for 0 < t ≤ T and all x ∈ Ω. At t = 0, it is required that

u(·, 0) = u0 for a prescribed divergence-free initial veloc-

ity field u0. In (1)-(2), f is a given body force and ν the

kinematic viscosity of the fluid. ε(u) = 1/2(∇u + (∇u)T )

denotes the rate-of-deformation tensor.

At the boundary Γ × (0, T ] = ∂Ω × (0, T ], Dirichlet and
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Neumann boundary conditions are applied, respectively,

g = u on ΓD × (0, T ] (3)

h = pn + 2νε(u) · n on ΓN × (0, T ] (4)

for ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ, with n denoting the

outer normal to the boundary.

Variational Formulation

Let (·, ·)Ω denote the standard inner product on L2(Ω).

We define the functional spaces for admissible solutions of

velocity and pressure to be Su and Sp, respectively. The

combined space of velocity and pressure solutions is denoted

by Sup := Su × Sp. Similarly, the test function space is

Vup := Vu × Vp.

The momentum equation (1) is multiplied by v ∈ Vu and in-

tegrated over the domain Ω. The viscous term and the pres-

sure term are integrated by parts; to the resulting boundary

integrals, the boundary condition (4) is applied. Analo-

gously, the continuity equation (2) is multiplied by q ∈ Vp

and integrated over Ω.

Combining both the momentum and the continuity equation

in one equation yields the weighted residual formulation of

the problem: find (u, p) ∈ Sup such that for all (v, q) ∈ Vup

it holds

BNS (v, q;u, p) = `(v) (5)

for 0 < t ≤ T and u(·, 0) = u0. The form BNS (v, q;u, p) is

defined by the terms on the left hand side, i.e.,

BNS (v, q;u, p) = (v, ∂tu)Ω + (v,∇ · (u⊗ u))Ω (6)

+ (ε(v), 2ν ε(u))Ω − (∇ · v, p)Ω − (q,∇ · u)Ω

whereas the linear form `(v) includes forcing term and the

Neumann boundary condition:

`(v) = (v, f)Ω + (v,h)ΓN
(7)

Variational Multiscale Method

The variational multiscale method was introduced in

Hughes et al. (1998) as a general framework for com-

putational mechanics with the objective to derive suitable

mathematical models and numerical methods for multiscale

phenomena. The variational multiscale method is built upon

the variational form of the problem, that is, equation (5) for

the Navier-Stokes equations. Starting point is a sum decom-

position of the solution as

u = uh + û, p = ph + p̂ (8)

The variable uh is resolved numerically, while û is to be

eliminated from the problem in uh. The impact of û to the

equations shall yet be conserved.

Similarly, the test functions are decomposed as

v = vh + v̂, q = qh + q̂ (9)

The ansatz for the admissible solutions (8) is inserted

into the weak form (5). Now, it is tested separately with

“resolved” test functions (vh, qh) ∈ Vh
up and “unresolved”

test functions (v̂, q̂) ∈ V̂up. The result is a system of two

equations:

BNS

�
vh, qh;uh + û, ph + p̂h

�
= `

�
vh
�

(10)

BNS

�
v̂, q̂;uh + û, ph + p̂h

�
= ` (v̂) (11)

where the first equation is to hold for all
�
vh, qh

�
∈ Vh

up and

the second one for all (v̂, q̂) ∈ V̂up. The equation projected

onto the space of unresolved scales (11) is not solved for and

will be omitted. To equation (10), a linearization technique

(Hughes et al., 2000) is applied, yielding

BNS

�
vh, qh;uh, ph

�
= `

�
vh
�

(12)

− B1
NS

�
vh, qh;uh; û, p̂

�
− B2

NS

�
vh; û

�

where B1
NS

�
vh, qh;uh; û, p̂

�
contains linear terms in the un-

resolved quantities, while B2
NS

�
vh; û

�
=
�
vh, û ·∇û

�
Ω

con-

tains the quadratic contribution from convection, see, e.g.,

Gravemeier (2006b) for elaboration.

Three-Scale Separation. The separation into two dif-

ferent scales, resolved and unresolved quantities, can be

extended to a third scale group as described, for instance,

in Gravemeier (2006b). The additional group is used to fur-

ther distinguish the resolved part: large resolved scales and

small resolved scales. This means that a decomposition of

the form

u = ūh + u′h| {z }
uh

+û, p = p̄h + p′h| {z }
ph

+ p̂ (13)

is obtained for the admissible solution functions and simi-

larly for the test functions. As done above, this approach

is inserted into the weak form (5) and tested with the in-

dividual test functions separately. The equation projected

onto the space of unresolved scales is omitted, leading to

a two-equation system projected onto the space of resolved

scales:

BNS

�
v̄h, q̄h;uh, ph

�
= `

�
v̄h
�

(14)

− B1
NS

�
v̄h, q̄h;uh; û, p̂

�
− B2

NS

�
v̄h; û

�

BNS

�
v′h, q′h;uh, ph

�
= `

�
v′h

�
(15)

− B1
NS

�
v′h, q′h;uh; û, p̂

�
− B2

NS

�
v′h; û

�

It can be seen from this system that the equation in the

large resolved scales (14) is accessible independently from

the equation in the small resolved scales (15).

Variational Multiscale Large Eddy Simulation

The system (14)-(15) still contains the unresolved vari-

ables û and p̂. The next step towards an implementation

of the method is to determine which effect the terms B1
NS

and B2
NS actually have within the Navier-Stokes equations.

An established approach for representing the effect of the

unresolved scales is LES with a Smagorinsky model. It

aims to reintroduce the insufficiently resolved dissipation in

the form of an additional viscous term, i.e., by approximat-

ing the terms B1/2
NS on the right hand side of (12) by an

additional viscous term, the so-called subgrid viscosity, cf.

Sagaut (2006).

The derivation of a traditional LES in this form was the

basis for a further development of the method, leading to

a variational multiscale Large Eddy Simulation (VMLES).

The method is applied to the three-scale separation derived

in (14)-(15). Turbulence theory specifies that energy trans-

port occurs mainly between neighboring scale groups. This

observation motivates the restricted application of a subgrid-

viscosity model only to the small resolved scales, which are
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closer to the unresolved scales in the scale spectrum. Large

resolved scales, on the other hand, will not be influenced

directly by any model. Hence, the approximations

B1
NS

�
v̄h, q̄h;uh; û, p̂

�
+ B2

NS

�
v̄h; û

�
≈ 0 (16)

B1
NS

�
v′h, q′h;uh; û, p̂

�
+ B2

NS

�
v′h; û

�

≈
�
ε(v′h), 2ν′T ε(u

′h)
�

Ω
(17)

are used. To the small resolved scales, an adopted subgrid-

viscosity model is applied. The small-scale subgrid viscosity

is defined by a slightly modified Smagorinsky model as

ν′T = (CSh)
2
���ε(u′h)

��� (18)

with CS denoting the Smagorinsky constant, h the element

size and
��ε(u′h)

�� =
p

2ε(u′h) : ε(u′h) the norm of the small-

scale velocity gradient.

Inserting the approximations (16) into (14) and (17) into

(15) yields the final system

BNS

�
vh, qh;uh, ph

�
+
�
ε(v′h), 2ν′T ε(u

′h)
�

Ω
= `

�
vh
�
(19)

which is to hold for all test functions
�
vh, qh

�
∈ Vh

up.

VMLES IMPLEMENTATION BASED ON FEM

For an implementation of the VMLES (19), the small-

scale variables u′h and v′h have to be correctly defined.

Within the framework of a finite element method (FEM),

there are two possible ways to separate small from large re-

solved scales (Gravemeier, 2006b):

p-type Scale Separation One possibility to distinguish

between different scale groups within a FEM is to as-

sign different polynomial orders to basis functions of

large resolved scales and small resolved scales, respec-

tively. Lower-order basis functions constitute large

resolved scales, and higher-order functions constitute

small resolved scales. This can be done either by

using hierarchical basis functions, where the basis func-

tions are ordered by their polynomial order, or an

L2-projection onto a lower-order subspace.

h-type Scale Separation The second class of scale-

separating approaches makes use of different grids. A

coarse grid constitutes the large-scale variables ūh and

p̄h, whereas a finer grid specifies the variables at the

full resolution level uh and ph. The developments in

the following are based on an h-type scale separation

within a nodal-based FEM with (tri-) linear basis func-

tions.

h-type Scale Separation

An h-type scale separation requires the introduction of a

second grid. It is assumed that a coarse grid is given, con-

stituted of so-called parent elements. Each parent element

is isotropically subdivided into a predefined number of child

elements. The union of all child elements represents the ac-

tual resolution limit of the discretization and hence defines

the variables

uh(x, t) =

nu,totX
A=1

ϕA(x)uA(t) (20)

ph(x, t) =

np,dofX
A=1

ψA(x) pA(t) (21)

Figure 1: 1D illustration of the basis functions ϕ on the full

resolution level and the large-scale basis functions ϕ̄.
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Figure 2: 1D illustration of the construction of the small-

scale part u′h from uh and the large-scale part ūh.
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Note that some of the velocity degrees of freedom may be

fixed by Dirichlet boundary conditions.

The evaluation of the subgrid viscosity term in (19) in-

volves small resolved quantities. These are, however, not di-

rectly available, since the fine grid also contains coarse-scale

proportions. Hence, we define the small resolved velocity

indirectly as

u′h(x, t) = uh(x, t)− ūh(x, t) (22)

where we use the definition of uh in equation (13). In anal-

ogy to (20), the large-scale velocity is given in the usual FE

manner by a weighted sum of basis functions, i.e.,

ūh(x, t) =

n̄u,totX
Ā=1

ϕ̄Ā(x) ūĀ(t) (23)

The coefficients ūĀ(t) correspond to the coarse-scale approx-

imation of the velocity at the nodes of the parent elements.

The basis functions ϕ̄Ā are nodal-based piecewise linear

functions similar to the ones at the child level, but their

support is twice as large, see figure 1.

Figure 2 indicates that for linear elements, the nodes

from parent elements are also available on the child grid.

This means that the coefficients ūĀ(t) can be directly com-

pared with the coefficients uA(t) for indices A that are

related to nodal points at the parent level.

Hence, the small-scale part u′h can be expressed in terms of

the coefficients uA(t) and the basis functions ϕA and ϕ̄A as

u′h(x, t) =
X

A∈η̄∩η

(ϕA(x)− ϕ̄A(x))uA(t)

+
X

A∈(η\η̄)

ϕA(x)uA(t) (24)

where η = {1, . . . , nu,dof} is the set of nodal points at the

full resolution level and η = {1, . . . , n̄u,dof} ⊂ η the subset

of parent nodal points.

Expression (24) as well as a similar expression for the

small-scale test function v′h are used to perform the element

integrations. Thus, the additional term is now compatible

to standard FEM algorithms.
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NUMERICAL RESULTS FOR TURBULENT FLOW IN A

DIFFUSER

The diffuser geometry is shown in figure 3. In the inflow

channel, the inflow velocity uin (t) for the actual diffuser is

generated. No-slip boundary conditions are assumed at the

upper and lower walls Γw. A convective boundary condition

is prescribed at the outflow boundary Γout, and periodic

boundary conditions are assumed on the boundaries Γper in

x3-direction. The diffuser, including inlet and outlet chan-

nel, is discretized using 290, 64, and 80 control volumes in

x1-, x2-, and x3-direction, respectively.

To perform calculations, an h-type VMLES within a fi-

nite volume method (FVM) was developed. The method was

implemented into the CDP-α code, the flagship LES code

of the Center for Turbulence Research at Stanford Univer-

sity. The control volumes are uniformly distributed in the

spanwise direction. In the wall-normal direction, a cosine

function for refinement towards the walls for the parent grid

is used, with the isotropic hierarchical subdivision proce-

dure subsequently applied. In the streamwise direction, the

following control volume distribution is employed: in the in-

let channel, h1 decreases linearly from 0.15 to 0.05, in the

asymmetric diffuser section, h1 increases linearly from 0.05

to 0.475, in the first section of the outlet channel (up to

x1 = 74.5), h1 increases linearly from 0.475 to 0.825, and in

the remaining section of the outlet channel, the control vol-

umes are uniformly distributed with h1 = 0.825. Comparing

the discretization of the diffuser to the finer discretization

in the Wu-LES (Wu et al., 2004), which employed 590, 100,

and 110 control volumes in x1-, x2-, and x3-direction, it is

stated that less than 23% the number of control volumes are

used in the present case.

Three different methods are investigated: the dy-

namic Smagorinsky (DS) model in a non-multiscale appli-

cation (see Germano et al., 1991), the constant-coefficient-

based Smagorinsky model within the multiscale environment

(CMS), and the dynamic Smagorinsky model within the

multiscale environment (DMS). All of these methods are

analyzed for a projective scale-separating operator Spm as

defined in Gravemeier (2006a). The abbreviation “DMS-

PM”, for instance, indicates the variational multiscale LES

incorporating a dynamic Smagorinsky model, with the scale-

separating operator Spm applied. In addition, a non-

projective scale-separating operator Ssm (smoothing prolon-

gation) is investigated for CMS, since this method revealed

the most notable differences between the scale-separating

operators for the test case in Gravemeier (2006a). Results

are also reported for simulations using no model at all (NM),

which represents a coarse (i.e., not sufficiently resolved)

DNS. The Wu-LES, which the results are compared to, ap-

plied the same dynamic Smagorinsky model in a traditional

non-multiscale LES (i.e., DS using smooth filters for scale

separation). Evaluating the necessary computational effort

provides the following numbers. Setting the computational

effort for NM to 1.0, the relative measures for CMS-PM,

CMS-SM, DS-PM and DMS-PM are approximately 1.08,

1.34, 1.27, and 1.32, respectively. These numbers are even

more impressively in favor of CMS-PM than the ones for the

channel in Gravemeier (2006a). Thus, it is confirmed that

CMS in combination with PM is a very efficient method com-

putationally, in the present case substantially more efficient

than, for instance, DS. Using the scale-separating operator

SM, the numbers increase drastically for CMS. Less effort is

required for PM compared to SM for reasons explained in

Gravemeier (2006a).

Figure 3: Diffuser geometry in x1-x2-plane

Figure 4: Skin friction coefficient (factor 1000) along the

upper wall of the diffuser

As one sample of the flow parameters investigated, figure

4 depicts the results for the skin friction coefficient along the

upper wall of the diffuser. Results for further flow param-

eters can be found in Gravemeier (2007). It is stated that

all methods tend to underpredict Cf compared to the re-

sults from the Wu-LES and the Buice-experiment (Buice and

Eaton, 1997). The worst results are produced by CMS-SM.

The profile for NM is closest to the ones from the Wu-LES

and the Buice-experiment immediately behind the diffuser

throat, but gets worse in its prediction further downstream.

DS-PM yields a fairly good prediction throughout the dif-

fuser, and DMS-PM produces worse results than DS-PM.

Although the results for CMS-PM are worse than the ones

for NM immediately behind the diffuser throat, the predic-

tion is the best overall. It is the only method yielding results

which almost match the experimental results in the section

of the diffuser between x1 ≈ 18 and x1 ≈ 46. In this part

of the diffuser, which is approximately the region where the

flow is separated, CMS-PM appears to produce even better

results than the substantially finer discretized Wu-LES. Fur-

thermore, it seems to be the only one of the present methods

which would have been able to predict the first point from

the Buice-experiment at x1 ≈ −10, if the inlet channel had

been elongated.

1D FOURIER ANALYSIS OF VMLES

In order to understand the impact of the subgrid-

viscosity model applied to the small resolved scales, Kron-

bichler (2007) analyzed it with tools from Fourier analysis.

To this end, it is assumed that the subgrid viscosity ν′T is

constant, namely ν′T = 1 in (19). Additionally, the analysis

is performed using an equation with only one space dimen-

sion in the unit interval Ω = (0, 1). The domain Ω is divided

into n̄ equal-sized parent elements. Each parent element

is isotropically divided into two child elements, such that

the full discretization consists of n = 2n̄ elements of size

h = 1/n. The basis functions ϕA and ϕ̄A are depicted in

figure 1.

Except the subgrid viscosity term and the time derivative

of u, all terms in the Navier-Stokes equations (1)-(2) are
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omitted. The result is a parabolic-like equation, which is

completed by homogeneous Dirichlet boundary conditions.

Since the subgrid viscosity
�
ε(v′h), 2ν′T ε(u

′h)
�
Ω

is purely

diffusive, it is reasonable to compare it to a standard vis-

cous term
�
ε(vh), 2νT ε(u

h)
�
Ω

, as it is also introduced by

a standard Smagorinsky model. In one spatial dimension,

this means that the discretized parabolic-like equation in-

cluding the subgrid-viscosity term is compared to the usual

heat equation, i.e.,

�
vh, ∂tu

h
�

Ω
= −

�
∂xv

′h, ∂xu
′h
�

Ω
(25)�

vh, ∂tu
h
�

Ω
= −

�
∂xv

h, ∂xu
h
�

Ω
(26)

Here, the variables uh and vh denote the usual finite ele-

ment approximations of the solution and the respective test

functions, and u′h and v′h the small-scale quantities.

Semi-Discretization in Space – System of ODE

As done above for the general equations, (20) and (24)

are inserted into the equations (25) and (26), respectively.

Performing the element integration and subsuming the co-

efficients uA to one vector u leads to a system of ordinary

differential equations in time.

For the parabolic-like equation including the subgrid-

viscosity term, we obtain the system

Mh∂tu = Ksv
h u (27)

where the (n− 1)× (n− 1) mass matrix1 is given by

Mh =
h

4

0
BBBBBB@

2 1

1 2 1

. . .
. . .

. . .

1 2 1

1 2

1
CCCCCCA

(28)

and the (n− 1)× (n− 1) stiffness matrix by

Ksv
h =

1

2h

0
BBBBBBBBBBBBB@

−4 2

2 −2 2 −1

2 −4 2

−1 2 −2 2 −1

. . .
. . .

. . .
. . .

. . .

2 −4 2

−1 2 −2 2

2 −4

1
CCCCCCCCCCCCCA

(29)

Similarly, the standard heat equation results in

Mh∂tu = Kheat
h u (30)

with the mass matrix (28) as above and the stiffness matrix

Kheat
h =

1

h

0
BBBBBB@

−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2

1
CCCCCCA

(31)

Obviously, the stiffness matrices Ksv
h and Kheat

h mainly

drive the solution to the individual equations (25) and (26).

To learn about the properties, the eigenvalues and corre-

sponding eigenvectors of the matrices are calculated. This

1Due to the Dirichlet b.c., only n− 1 inner points are left.

Figure 5: Eigenvalues against wave number of eigenvectors

for stiffness matrix Kheat
h , total system in (30) and exact

differential operator ∂xx at n = 40.

can be done analytically for the heat equation via a Fourier

analysis.

Fourier Analysis for the Heat Equation

The special structure of the matrix Kheat
h gives rise to

a homogeneous difference equation. When trying to find an

eigenvalue, the equation Kheat
h y = λy for some eigenvector

y 6= 0 is to be solved. This is equivalent to solving the

homogeneous difference equation

1

h
(uk−1 − (2 + hλ)uk + uk+1) = 0 (32)

with homogeneous boundary data u0 = un = 0. The Fourier

ansatz is a plane wave uk = eiπxkj with xk = k/n denoting

the spatial position and j = 1, . . . , n the wave parameter.

Using the boundary conditions gives the eigenvector y(j) =

(u
(j)
1 , . . . , u

(j)
n−1)

T as

u
(j)
k = sin

�
jkπ

n

�
(33)

for the j-th eigenvalue

λj = −
2

h

�
1− cos

�
jπ

n

��
= −

4

h
sin2

�
jπ

2n

�
(34)

Hence, the eigenvector y(j) to the eigenvalue λj is a plane

wave with normalized wave number κj = jπ/n. This makes

it possible to display the eigenvalues related to the relevant

parameter of the eigenvector, namely the wave number κj .

Figure 5 displays the run of the eigenvalue λj of the (normal-

ized) matrix hKheat
h with the wave number κj . The figure

includes the run of the eigenvalues for the full matrix in

(30), i.e., after including the mass matrix. The eigenvalues of

h2M−1
h Kheat

h differ from (34) by the term 1/2(1+cos(jπ/n))

in the denominator. Figure 5 is completed by the properties

of the exact differential operator ∂xx (spectral differentia-

tion), where the normalized eigenvector to κj is −κ2
j .

Application of Fourier Techniques to Subgrid Viscosity

The Fourier technique introduced above can be used to

get an estimate for the eigenvalues of the more complicated

stiffness matrix Ksv
h . As can be seen, the rows of the matrix

are in turn given by a three-term recursion and a five-term

recursion, respectively. The five-term recursion stems from
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Figure 6: Eigenvalues against wave number of eigenvectors

for VMLES stiffness matrix Ksv
h , eigenvalue estimate with

Fourier theory at n = 40. Note the difference between

VMLES and standard LES (i.e., using Kheat
h ) at low wave

number κj .

even grid points with parent-element basis functions present,

whereas the three-term recursion is obtained at odd child-

only points, cf. figure 1 for the grid construction. Hence, an

approximation of the eigenvalues is obtained by calculating

the solutions to each of these recursions (with eigenvalues

λ
(e)
j and λ

(o)
j , respectively) and build the final eigenvalue by

an average of both solutions:

λsv,est
j =

1

2

�
λ
(e)
j + λ

(o)
j

�
(35)

=
1

2h
(−3 + 4 cos(φj)− cos(2φj)) .

In addition to this eigenvalue estimate, the true eigenval-

ues and eigenvectors of the matrix are calculated numerically

at n = 40. Figure 6 compares the true eigenvalues with the

estimate (35). The exact eigenvectors are no longer plane

waves, though. Nonetheless, they are quite close to plane

waves, making the comparison in terms of wave numbers in

figure 6 a good qualitative description.

Figure 6 includes a comparison between the small-scale

subgrid viscosity from the VMLES to the subgrid viscosity of

a traditional LES. It can be seen from the figure that there

is indeed no viscosity at the larger resolved scales for the

VMLES, while there is a notable viscosity for the traditional

LES. This supports that the above construction with two

grids does indeed impose the subgrid viscosity only to small

scales.

Fourier Analysis: Tool to compare Scale-Separating Methods

The eigenvalue analysis with Fourier techniques has been

used to characterize the properties of the small-scale subgrid

viscosity introduced by the VMLES. This characterization

can be applied to other scale-separating approaches as for

example the one used in Gravemeier (2006a, 2007). The

different performance of the individual scale-separating op-

erators may already be explained by their eigenvalues for

a one-dimensional test equation like (25). For instance,

other scale-separating operators may lead to a eigenvalue

distribution similar to the estimated eigenvalue distribution

according to (35), that is, the transition from non-influenced

to influenced scales may be gradual and not sharp as it ac-

tually is for the h-type separation used above. Similarly, the

Fourier analysis can help in comparing the used h-type scale

separation to a p-type scale separation as well as identifying

possible differences and similarities.

CONCLUSIONS

The framework of the variational multiscale method has

been used to derive a method for variational multiscale large

eddy simulation of turbulent flows. The influence of the

subgrid-viscosity model is restricted to the smaller of the

resolved scales, whereas the large resolved scales are left

without the addition of a modeling term. The separation

between large and small resolved scales has been demon-

strated for a finite element method using multiple grids, one

to define large resolved scales and the finer one for the whole

resolution limit. However, this approach is also applicable

to a finite volume method. The results for a simulation of a

turbulent diffuser flow have shown the good performance of

the VMLES for relatively coarse grids and indicated its great

potential for high-fidelity simulations of turbulent flows.

A Fourier analysis of a linearized subgrid-viscosity term

has been introduced as a tool to analyze scale-separating

methods. With this approach, various scale-separating pro-

cedures can be compared, without implementing them fully

in a three-dimensional code. This may give first indications

concerning similarities and differences of the individual ap-

proaches.
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