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ABSTRACT

A coherent structure model (CSM) as a subgrid scale

(SGS) model is applied to the flows in complex geometries.

The simulations of flow over a backward-facing step and flow

in an asymmetric plane diffuser are examined. The CSM

yields a level of accuracy similar to that obtained by us-

ing the dynamic Smagorinsky model (DSM) (Germano et al.

1991). Compared to the DSM, the newly proposed CSM has

advantages of local determination of the SGS model param-

eter and of faster computation. Since the model parameter

of the CSM has a positive, finite small variance, it is stable

in spite of local determination of the model parameter. This

model is suitable for engineering applications with complex

geometries.

INTRODUCTION

Fine-scale coherent eddies are an important feature of

turbulence. These eddies scale with the Kolmogorov mi-

croscale, and have been found universally in homogeneous

isotropic turbulence, planar channel flow, and mixing layers

using direct numerical simulation (DNS) by Miyauchi and

Tanahashi (2001). In the DNS, there is the following cor-

relation; the energy dissipation is small at the center of a

coherent fine scale eddy, and in the surrounding region of

its eddy the large energy dissipation exists with a double-

peak (Tanahashi et al. 1996; Tanahashi et al. 1997). Thus,

coherent eddies have relation to the energy dissipation of

turbulence and are extracted by the second invariant of a

velocity gradient.

Hunt et al. (1988) and Chong et al. (1990) classified the

coherent structures using the second and the third invariants

of a velocity gradient tensor. A positive second invariant

indicates a coherent eddy whose vorticity is stronger than

its strain. This definition of the positive second invariant is

common to extract the coherent eddies, although there are

lots of strict definitions or rigorous thresholds.

There is two pathways to use the coherent structures for

the SGS model; one is to reflect precisely spatial location

between the coherent structures and the budget of the SGS

kinetic energy, and the other is to reflect the collective in-

formation about the budget to the SGS model. The former

position is attractive, but it remains in the future study. The

present model takes the latter position.

This is due to the selection of the SGS eddy viscosity

model — actually Smagorinsky type model — in order to sta-

bly apply to complex geometries. In addition, the SGS eddy

viscosity model is not well correlated with the true SGS

stress tensor obtained from filtered DNS, whereas the SGS

energy transfer — in another word the SGS energy dissipation

— is well correlated with that obtained from filtered DNS (see

e.g., Salvetti & Banerjee 1995). Yet, the SGS eddy viscos-

ity model cannot express the backward transfer. Again, the

main objective in the present study is to stably apply the

SGS model to complex geometries and to obtain reasonable

results.

Recently, Kobayashi (2005) proposed a coherent struc-

ture model (CSM) as a subgrid scale (SGS) model. This

model has been tested in a series of canonical turbulent flows

including rotating and non-rotating channel flows and was

found to yield a level of accuracy similar to that obtained

by using the dynamic Smagorinsky model (DSM) (Germano

et al. 1991). Then, the CSM was applied to the MHD

turbulent channel flow and gave a better prediction of the

re-laminarization than the DSM under a uniform magnetic

field perpendicular to the wall (Kobayashi, 2006).

In this study, the applicability of the CSM is further

assessed in the simulations of flow over a backward-facing

step and flow in an asymmetric plane diffuser.

SUBGRID-SCALE MODELS

In large-eddy simulation (LES), the SGS stress tensor

τij = uiuj − uiuj (1)

is modeled. The CSM and the DSM are examined in the

present study.

Coherent structure model

In LES, coherent structures are extracted by the second

invariant Q in a resolved-scale field, which is given by
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where Sij is the strain-rate tensor, and W ij is the vorticity

tensor.

In the present study, the second invariant is applied

to the model parameter C of the Smagorinsky model

(Smagorinsky 1963):
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where ∆ is the filter width, and |S| is the magnitude of the
strain-rate tensor Sij . The model parameter C is deter-

mined as follows:

C = C0 |FCS |3/2 FΩ, C0 =
1
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where FCS is the coherent structure function, which is nor-

malized by a magnitude of the shear E; FΩ is the energy-

decay suppression function. The second invariant Q has

relation to the energy dissipation of turbulence regardless

of its sign, so that the absolute value of Q is considered in

C. The 3/2 power of FCS in Eq. (5) is consistent with the

fact C ∝ y3 near walls with Q ∝ y2 and E ∝ const. for in-
compressible flows. It is very easy to implement this model

in an LES code with the conventional Smagorinsky model

because Sij and SijSij have been already programmed, and

only a sign switch is needed to compute W ij and W ijW ij .

The parameter C0 is determined by a priori tests in isotropic
homogeneous and channel turbulent flows, and its value is

fixed as 1/22. This model is called a coherent structure

model, CSM (Kobayashi 2005).

This model is very simple because one has only to cal-

culate vorticities in a resolved-scale field. This model also

realizes a suppression of the energy decay in a flow field with

a high rotation because FΩ gives a suppression of the dissi-

pation with the increase in an angular velocity (Kobayashi

2005). The functions of FCS and FΩ have distinct upper

and lower limits:

−1 ≤ FCS ≤ 1, 0 ≤ |FCS | ≤ 1, 0 ≤ FΩ ≤ 2 (8)

As a result, the model parameter C of the CSM has a finite

small variance, and the numerical simulation with the CSM

is stably carried out even though the model parameter is

locally determined.

Dynamic Smagorinsky model

The model parameter of the DSM (Germano et al. 1991)

is determined using a least square procedure proposed by

Lilly (1992) with an average in homogeneous directions.

C =
hLijMiji
hMijMiji

(9)

where Lij and Mij are given by

Lij = duiuj −buibuj (10)

Mij = 2∆
2 d|S|Sij − 2b∆2|bS|bSij (11)

where the double filter width b∆ is defined as

Figure 1: Computational domain for a backward-facing step.

b∆
∆
= 2 (12)

In this way, C is dynamically determined in the DSM. To

compare the model parameters, CS =
p
|C| is used here-

after. The test-filtered velocity bui in homogeneous directions
is calculated using a Simpson rule as

bf i = 1

6

¡
f i−1 + 4f i + f i+1

¢
(13)

In Eq. (9), h i denotes the averaging in homogeneous direc-
tions. The averaging and the clipping under ν+νt < 0 (ν the

molecular viscosity; νt the SGS eddy viscosity) is conducted

to avoid any negative values.

This model is implemented to the simulations of a

backward-facing step folw and a diffuser flow. Note that

for the backward-facing step flow the filter width ∆ =

(∆x∆z)1/2 is used instead of ∆ = (∆x∆y∆z)1/3 because

a filtering in the y direction is not adopted.

RESULTS AND DISCUSSION

The CSM and DSM are conducted to complex geome-

tries: a backward-facing step flow with a structured grid

and a diffuser flow with an unstructured grid.

Backward-facing step flow

Figure 1 shows the computational domain for a turbulent

flow over a backward-facing step. The grid resolution is

256× 96× 64 in the x, y, and z directions, respectively; x is
the streamwise direction, y is the one normal to the walls,

and z is the spanwise one. The Reynolds number based on

the step height H and bulk velocity Ub was 4800. This value

is close to 4775 in the experiment by Kasagi and Matsunaga

(1995); the Reynolds number based on the step height and

a centerline velocity at the inlet is 5500. The domain depth

in z direction is 3H. The grid was stretched out with the

factors; 4 (x = −5) : 4 (x = −1) : 1 (x = 0) : 2 (x = 2)

: 2 (x = 10) : 4 (x = 20) in the x direction; 1 (y = 0)

: 10 (y = 0.5) : 1 (y = 1) : 20 (y = 2) : 1 (y = 3) in

the y direction. An inflow condition is imposed at x = −5,
and the inflow profile is given a fully developed channel flow

at Reτ = 290. The time step is 0.01H/Ub. A convective

condition is applied at the outflow boundary. Statistics for

the CSM, the DSM, and no model are accumulated over

20,000 time steps (200 time units), respectively.

This simulation was performed using JETCODE

(CHUCK’S CODE), a structured incompressible flow solver

developed at the Center for Turbulence Research, Stanford

University. This code is based on a second-order central-

discretization on a staggered-grid, a second-order time ad-
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Figure 2: Streamwise mean velocity profiles; (upper figure):

inlet ≤ x ≤ 10, 0 ≤ y ≤ 3; (lower figure): 4 ≤ x ≤ 8, 0

≤ y ≤ 1. , CSM; , DSM; , no model;

◦, experimental data by Kasagi and Matsunaga (1995).

Figure 3: Streamwise rms velocity profiles. , CSM;

, DSM; , no model; ◦, experimental data by
Kasagi and Matsunaga (1995).

Figure 4: Reynolds shear stress profiles. , CSM;

, DSM; , no model; ◦, experimental data by
Kasagi and Matsunaga (1995).

vancement, and a Poisson equation for pressure (see Ak-

selvoll and Moin 1995; Pierce 2001).

Figure 2 shows the profiles of streamwise mean velocities

for the CSM, the DSM, and no model in comparison with

the particle-tracking velocimetry (PTV) data by Kasagi and

Matsunaga (1995). The lower figure in Fig. 2 shows the

close-up of the upper figure in a reattachment region near

a lower wall. Whereas the overall profiles of the CSM, the

DSM, and no model in the upper figure are almost the same,

the lower figure shows that no model simulation gives under-

predictions from x = 4 to x = 8 in a reattachment region

near a lower wall. The CSM and DSM, however, agree well

Figure 5: Ratios of the SGS eddy viscosity and the molecular

viscosity. , CSM; , DSM.

Figure 6: Skin friction profiles. , CSM; , DSM;

, no model; ◦, DNS result by Le et al. (1997).

with the PTV data. The CSM gives a level of accuracy

similar to the DSM in spite of a local model.

Figures 3 and 4 show the profiles of streamwise rms ve-

locities and Reynolds shear stress for the CSM, the DSM,

and no model in comparison with the PTV data by Kasagi

and Matsunaga (1995). Whereas the profiles of the CSM,

the DSM, and no model in Fig. 3 are almost the same,

in Fig. 4 no model simulation gives under-predictions from

x = 3 to x = 7 at y = 1 in comparison with the CSM and

DSM. The profile of the CSM agrees well with that of the

DSM, although the CSM is a local SGS model.

Figure 5 shows the ratios of the SGS eddy viscosity νt
and the molecular viscosity ν for the CSM and the DSM.

The ratio for the CSM becomes small at y = 1 because the

SGS eddy viscosity depends on ∆y in ∆ = (∆x∆y∆z)2/3,

and the ∆y is stretched out to create the finest mesh. On

the other hand, in the present study the ratio for the DSM

does not depend on ∆y because the SGS eddy viscosity is

determined using an average in homogeneous directions and

not using a filtering for the y direction (Germano et al. 1991;

Lilly 1992). In the DSM the filtering in the y direction is

”optional“, and in some studies the filtering is carried out.

In that situation the DSM would give a similar profile at

y = 1 to the CSM.

However, the sharp profile of the CSM seems to be valid

because in the small mesh the effect of νt to ν should be

small. Although the SGS eddy viscosity of the CSM sharply

changes at y = 1, the statistics of the first and second mo-

ments of the CSM were almost the same as those of the

DSM. In addition, the CSM was numerically stable.

The CSM ran 15% faster in total CPU time than the

DSM, which gives it a significant advantage over the DSM.

Figure 6 shows the skin friction profiles for the CSM, the
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Figure 7: Computational domain for an asymmetric plane

diffuser.

DSM, no model, and the DNS result by Le et al. (1997).

The Reynolds number for the DNS is 5100 based on a cen-

terline velocity and a step height. This Reynolds number is

similar to 5500 in our simulation. The slight difference of

the amplitude in the skin friction between the DNS and the

other results comes from the difference of the expansion ra-

tio of the backstep configuration. In our case the expansion

ratio of 1.5 is used, while in the DNS that of 1.2 was used.

The skin friction profiles of the CSM and DSM agree well,

whereas that of no model gives a far reattachment point.

The reattachment lengths for the CSM, DSM, and no model

are 7.09, 6.87, and 7.88, respectively. However, an experi-

mental result by Kasagi and Matsunaga (1995) was 6.51. A

higher grid resolution of 384×192×64 with the same stretch
factors as the lower one was examined to confirm the reat-

tachment length. In that study, the reattachment lengths

for the CSM, DSM, and no model are 6.81, 6.75, and 7.13,

respectively. For each resolution, it is confirmed that the

CSM gives a similar prediction to the DSM.

Diffuser flow

Figure 7 shows the computational domain for a turbulent

flow through an asymmetric plane diffuser. The diffuser has

a total expansion ratio of 4.7h and a single-sided deflection

wall of 10◦. An experiment for this configuration was carried
out by Obi et al. (1993); more detailed experiments were

conducted by Buice and Eaton (1997). The grid resolution

is 400×80×80 in the x, y, and z directions, respectively (x is
the streamwise direction, y the one normal to the walls, z the

spanwise one). An inflow condition is imposed at x = −5,
and the unsteady inflow profile is given a fully developed

channel flow at Reτ = 500. A convective condition is applied

at the outflow boundary.

This simulation was carried out using an unstructured

LES solver CDP, developed at the Center for Turbulence Re-

search, Stanford University. The filtered momentum equa-

tions are solved on a cell-centered unstructured mesh with

a second-order accurate central difference spatial discretiza-

tion. An implicit time-advancement procedure is applied.

The Poisson equation is solved to determine the pressure

field. For further details about the numerical algorithm, see

Ham and Iaccarino (2004); for more information about the

diffuser simulation, see Wu et al. (2006) and Schlüter et al.

(2005). In this study, two times larger filter width was used

for the CSM.

Figure 8 shows the streamwise profiles of mean (left col-

umn) and rms (right column) velocities at x = 5.18, 11.96,

27.1, and 33.86 from top to bottom for the CSM, the DSM,

and no model. Those figures reflect the DSM results with a

finer grid resolution (590 × 100 × 110) by Wu et al. (2006)
and the experimental data by Buice and Eaton (1997). The

CSM predicts almost the same streamwise mean velocity as

the fine DSM at each x location. At x = 27.1 the DSM and

no model under-predict the mean velocity profiles at y = 0,

while the CSM agrees with the experimental data at y = 0.

On the other hand, the CSM gives some over-predictions

near an upper wall at x = 27.1 and 33.86 in comparison

with the DSM and no model. Overall, the streamwise mean

and rms velocities of the CSM agree well with those of the

fine DSM and the experiment.

Figure 9 shows the profiles of Smagorinsky constant Cs =√
C for the CSM at each x location. At the centerline of the

inlet, the Cs is about 0.09. As moving downstream, the Cs
increases, and at the shear layer region of x = 33.86 the

maximum Cs gives approximately 0.14, which is close to a

well-known value 0.15 in a mixing layer.

Figure 10 shows the skin friction profiles for the CSM,

DSM, no model, fine DSM, and experimental data. The

CSM under-predicts the skin friction from the inlet to x = 40

on an upper wall in comparison with the DSM and fine DSM,

while the CSM gives a good prediction of the skin friction

on a lower wall. Overall, the CSM predicts the skin friction

similar to the DSM.

CONCLUSIONS

A local SGS model based on coherent structures has been

applied to a backward-facing step flow and an asymmetric

plane diffuser. A structured and an unstructured code was

used for the backstep and diffuser flows, respectively. The

performance of the local coherent structure model for both

configurations is almost the same as the dynamic Smagorin-

sky model using an average in homogeneous directions. The

coherent structure model is inexpensive and efficient in com-

parison with the dynamic model, and is numerically stable

without averaging. The present model will be suitable for

the complex geometry without any homogeneous directions.

In the future, the local coherent structure model will be

applied to a complex geometry without any homogeneous

directions.
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