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ABSTRACT

A refinement of the standard Smagorinsky model is pro-

posed in order to take into account the inhomogeneities of

the mean flow. First results concerning turbulent plane-

channel flows and backward-facing step flows indicate that

the model possesses a good predictive capability, essentially

equivalent to the dynamic Smagorinsky model, but with a

computational cost and a manageability comparable to the

original Smagorinsky model.

INTRODUCTION OF THE MODEL

On the importance of mean velocity gradients

Turbulence that occurs in nature is usually not, even ap-

proximately, homogeneous nor isotropic. There are frequent

important variations of the mean (ensemble-averaged) ve-

locity 〈u(x, t)〉 with the position x in the flow. In that case,

the gradients of the average properties of the fluctuating

velocity, u
′(x, t) ≡ u(x, t) − 〈u(x, t)〉, have a dominant ef-

fect on the evolution of the mean flow through the action of

the Reynolds stresses (Pope, 2000). Despite the importance

of these effects, it is usually thought that the small-scale

properties of general turbulent flows should be considered

as homogeneous and isotropic. This hypothesis is rooted in

the idea that eddies of sufficiently small size undergo strong

non-linear interactions, which result in a cascade of kinetic

energy (towards smaller scales) where all statistical infor-

mation about the large-scale inhomogeneities is lost. This is

the classical framework of the Kolmogorov’s theory (Frisch,

1995). Within this framework, the size-scale of eddies should

be small compared to the length-scale associated with the

mean velocity gradients, i.e.,

LS ∼ u′

S
∼

√

〈
(

u′

i

)2〉
√

(

∂〈ui〉
∂xj

)2

(1)

where u′ and S may be viewed as the characteristic values

of the fluctuating velocity and of the mean-velocity-gradient

tensor, respectively; S is usually termed the shear and may

be re-written as

S = |〈S〉| ≡
√

2〈Sij〉〈Sij 〉 (2)

where S denotes the rate-of-strain tensor (the symmetric

part of the velocity-gradient tensor). Finally, eddies of size

larger than LS have no time to adjust dynamically via non-

linear interactions but are strongly distorted by the shear.

Implications concerning large-eddy simulations

In a large-eddy simulation (LES), only the large-scale

dynamics of the flow are resolved, while the subgrid-scale

(SGS) motions are parametrized (Sagaut et al., 2006). The

effect of SGS dynamics appears in the governing equations

through an additional stress that needs to be modeled in

terms of the grid-scale velocity field in order to close the

equations (Lesieur, 1997).

According to the previous reasoning, SGS fluctuations

may be considered as homogeneous and isotropic in flow-

regions where the grid-scale ∆ (fixed by the resolution of

the simulation) remains smaller than the shear length-scale

LS . In that situation, the Smagorinsky’s model (1963) is a

relevant proposal: An additional eddy-viscosity (related to

the SGS motions) is introduced as

νSmag.
T

(x, t) = (CS∆)2 |S∆(x, t)| (3)
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where S∆ is the resolved rate-of-strain (at the resolution ∆).

However, the condition ∆ < LS cannot hold everywhere in

real flows, for instance, near a solid boundary where LS

necessarily vanishes (u′ → 0 and S → Swall 6= 0 in the

viscous sub-layer) because of the no-slip boundary condition.

In that regions, shear effects should therefore be taken into

consideration.

A shear-improved Smagorinsky model

We propose a shear-improved Smagorinsky model

(SISM) in which the magnitude of the shear is subtracted

from the magnitude of the instantaneous resolved rate-of-

strain:

νSISM
T (x, t) = (CS∆)2 (|S∆(x, t)| − S(x, t)) (4)

S(x, t) denotes the shear at the position x and time t, CS

is the Smagorinsky constant for homogeneous and isotropic

turbulence (CS ≈ 0.17 according to Lilly (1967)) and ∆ =

(∆x.∆y.∆z)1/3 is the local grid spacing. It is assumed that

the flow is well enough resolved in the direction of the shear,

so that

S(x, t) ≈ |〈S∆(x, t)〉| (5)

It should be noticed that the angle brackets 〈 〉 a priori imply

ensemble average, however, space average over homogeneous

directions and/or time average will be considered in practice.

The main concerns of the SISM are, firstly, to take into

account shear effects in the exchanges of momentum to the

SGS motions (without any kind of adjustment) and, sec-

ondly, to make the eddy-viscosity automatically vanish in

laminar-flow regions (without ad hoc damping function).

The SISM stems from theoretical arguments that were ini-

tially put forward by Toschi et al. (2000) and developed by

Lévêque et al. (2007).

In flow regions where the fluctuating part of the rate-of-

strain is much larger than the shear, i.e. |S′

∆
| ≫ S, the grid

scale ∆ ≪ LS by assuming that |S′

∆
| ≈ u′/∆. In that case,

turbulence can be considered as homogeneous and isotropic

at scales comparable to ∆. The SISM then reduces to the

original Smagorinsky model, which is known to perform rea-

sonably well. In flow regions where |S′

∆
| ≪ S, the grid scale

∆ ≫ LS and therefore shear effects are significant at scales

comparable to ∆. In that case, the SISM yields a SGS en-

ergy flux of order ∆2S〈|S′

∆
|2〉, which is fully consistent with

the SGS energy budget that can be derived from the Navier-

Stokes equations in the case of a (locally homogeneous) shear

flow (Lévêque et al., 2007).

It should be stressed that the SISM exhibits apparent

similarities with the model originally proposed by Schumann

(1975), which relies on a two-part eddy-viscosity account-

ing for the interplay between the non-linear energy transfer

and the shear effects associated with anisotropy. However,

our model clearly differs from Schumann’s proposal, which

additionally, requires an empirical prescription for the inho-

mogeneous eddy-viscosity. Also, the expression (4) is not a

simplification of Schumann’s formulation.

TESTS OF THE MODEL

plane-channel flow

Over the last twenty years, LES of wall-bounded flows

have received considerable attention, with the turbulent

plane-channel flow being the prototypical case. This flow
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Figure 1: (•) mean-velocity profile (in wall units) at Reτ =

395. The computational domain (in outer units) is 4πH ×
2H × 2πH with 64 × 65 × 64 grid points. In comparison

with (−) the Dns data obtained by Moser et al. (1999)

in the domain 2πH × 2H × πH with 256 × 193 × 192 grid

points, and (△) a computation of the dynamic Smagorinsky

model (Germano et al., 1991) carried out by Piomelli (pri-

vate communication) in the domain 5πH/2×2H×πH/2 with

48 × 49 × 48 grid points (using a pseudo-spectral solver).

allows us for an investigation of the SISM in a simple geom-

etry. In this configuration, we have performed two LES at

Reτ = 395 and Reτ = 590, where Reτ is the Reynolds num-

ber based on the friction velocity uτ (Reτ = uτ H/ν with H

being the half width of the channel). In the present article,

we will only report the results at Reτ = 395. Details about

the simulations are provided by Lévêque et al. (2007). Let

us only mention that a pseudo-spectral Fourier-Chebyshev

(de-aliased) method has been used to limit (numerical) dis-

cretization errors and therefore concentrate on modelling

errors. In the following, the grid-scale velocity components

are U +u′, v′ and w′ along the streamwise, wall-normal and

spanwise directions, respectively.

First of all, it has been observed that the SISM exhibits

a transition (or drag crisis) from the initially perturbed

Poiseuille profile to the appropriate turbulent regime, as the
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Figure 2: Turbulent intensity profiles (normalized by the

squared friction velocity) in comparison with DNS data and

LES data obtained with the dynamic Smagorinsky model.
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Figure 3: Reynolds stress computed from the resolved ve-

locity. The inset focuses on the near-wall behaviour.
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Figure 4: The ratio
√

〈|S′

∆
|2〉/S is displayed as a function

of the wall-normal distance (in wall units). For y+ < 25,

the shear dominates over the fluctuating part of the rate-

of-strain. In that region, our eddy-viscosity differs from the

original Smagorinsky model.

integration progresses with the prescribed νSISM
T viscosity.

This feature is a first major improvement over the Smagorin-

sky model, for which such transition is not captured.

The mean velocity profile is displayed as a function of the

wall-normal distance (in wall units) in figure 1. The average

is used in time and over horizontal planes (homogeneous di-

rections). The agreement with the DNS data obtained by

Moser et al. (1999) is very good. The comparison with

the dynamic Smagorinsky model ((Germano et al., 1991) is

also satisfactory. The normalized turbulence intensity pro-

files are shown in figure 2. Also here, the profiles compare

well with the DNS data and LES results with the dynamic

Smagorinsky model; the positions of the peaks are captured

well and the errors on the peak values remain acceptable.

The grid-scale Reynolds stress profile is shown in figure 3.

The agreement with the DNS and the LES based on the

dynamic Smagorinsky model is fair and also the behaviour

close to the wall is satisfactory.

The ratio
√

〈|S′

∆
|2〉/S is shown as a function of the wall-

normal distance (in wall units) in figure 4. For y+ < 25,

the shear dominates over the fluctuating part of the rate-
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Figure 5: For the backward-facing step flow at Re = 4800

(based on the step height), the prediction of the skin-friction

coefficient, here displayed as a function of the distance to

the step, is in good agreement with experimental data, DNS

data and with a LES based on the dynamic Smagorinsky

model (DSM) at comparable Reynolds number. Notice that

the strength of the secondary recirculation bubble near the

corner (a sensitive diagnostic) is also correctly predicted.

of-strain, indicating the relevance of the shear component

of our eddy-viscosity in that region. The transition dis-

tance y+ ≈ 25 is fully consistent with the empirical dis-

tance A+ = 25 commonly used in the van Driest damping

function (Pope, 2000). In the log-layer,
√

〈|S′

∆
|2〉/S in-

creases slowly with y+ (the classical description of the log-

layer predicts a linear increase resulting from S ∼ 1/y and
√

〈|S′

∆
|2〉 ∼ uτ/∆) and eventually diverges around the cen-

terline of the channel. This behaviour indicates that our

eddy-viscosity suitably bridges the situation where the shear

prevails (close to the boundary) and the situation where fluc-

tuating part of the rate-of-strain dominates (in the bulk of

the channel).

backward-facing step flow

A more stringent test of the SISM has been been per-

formed in the backward-facing step geometry by Toschi et al.

(2006). In addition to wall effects, the flow over a backward-

facing step is strongly affected by the detached shear layer

and the recirculating motions behind the step. An adequate

resolution of the instability of the shear layer is required to

predict correctly the location of the reattachment point.

The SISM has been tested in a backward-facing step

flow configuration with resolution 256 × 96 × 64 in the x

(streamwise), y (wall-normal) and z (spanwise) directions,

respectively. The Reynolds number based on the height of

the step and the bulk velocity was 4800. The simulation

was preformed using jetCode, an incompressible-flow solver

developed at Stanford university. Details about the simu-

lations are provided by Toschi et al. (2006). It should be

mentioned that the standard value CS = 0.2 has been used

in simulations. The shear was evaluated by averaging in

the spanwise direction and by using a running average over

time with a weight recycling factor comparable to the eddy-

turnover time of the flow.

The computation of the skin-friction coefficient is dis-

played in figure 5. The skin-friction coefficient changes sign

from negative to positive at the reattachment point (indi-

cated by the arrow). We observe that the prediction is in

very good agreement with experimental and DNS results (at

comparable Reynolds number). We also see that the SISM
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performs well with respect to the DSM, but with the great

advantage of being much less demanding in computational

resources.

CONCLUSION

Our first tests indicate that the SISM possesses a good

predictive capacity (essentially equivalent to the dynamic

Smagorinsky model) with a computational cost and a man-

ageability comparable to the original Smagorinsky model.

Nonetheless, some issues need to addressed in the future.

In particular, a proper instantaneous shear should be de-

fined in the case of non-stationary flows. An average over

a time window of width comparable to the local large-scale

eddy-turnover time of the flow may be envisaged. How to

exactly implement this procedure is the matter of present

investigations.
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