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ABSTRACT

Lie group or symmetry approach applied to turbulence

as developed by Oberlack (see e.g. Oberlack (2001) and ref-

erences therein) is used to derive new scaling laws for various

statistical quantities of a zero pressure gradient (ZPG) tur-

bulent boundary layer flow. From the two-point correlation

(TPC) equations the knowledge of the symmetries allows us

to derive a variety of invariant solutions (scaling laws) for

turbulent flows, one of which is the new exponential mean

velocity profile that is found in the mid-wake region of flat-

plate boundary layers. Further, a third scaling group was

found in the TPC equations for the one-dimensional turbu-

lent boundary layer. This is in contrast to the Navier-Stokes

and Euler equations which has one and two scaling groups

respectively.

LIE GROUP ANALYSIS OF TPC EQUATIONS

Lie group analysis was applied to the TPC equations to

find their symmetry groups and thereof to derive invariant

solutions (scaling laws). The present analysis is based on

TPC equations under the assumption of a parallel mean ve-

locity profile ūi ≡ [ū1(x2), 0, 0] (where x2 is the wall normal

coordinate) and sufficiently apart from the viscous sublayer

we have
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where

Rij = u′i(x, t)u′j(x + r)

p′u′j = p′(x)u′j(x + r)

u′ip′ = u′i(x)p′(x + r)

R(ik)j = u′i(x)u′k(x)u′j(x + r)

Ri(jk) = u′i(x + r)u′j(x)u′k(x)

(2)

are two- and three-point correlation functions. Pressure-

velocity correlations are determined by the Poisson equation

and hence they are not independent of the velocity correla-

tions. The only unclosed terms in the equation are triple

correlations.

Lie’s procedure to find symmetry transformations and

the derivation of self-similar solutions may be divided into

three parts. The first one, the computation of the “deter-

mining system”, is completely algorithmic (this is one of the

important advantages of the method) and has been aided

by the Lie group software package by Carminati and Vu

(2000). The package is written for the computer algebra sys-

tem (CAS) MAPLE. It computes the system of “determining

equations”, which consist of a coupled, linear, homogeneous

and overdetermined system of partial differential equations

for the infinitesimals. In the first step of the present ap-

proach the infinitesimal generators must be determined from

equation (1). As a result, an over-determined set of ∼ 700

linear partial differential equations are obtained. The full

solution of the “determining equations”, i.e. the second step

of Lie’s procedure, is given in Khujadze (2006).

For the present problem we focus only on the scaling

symmetries, Galilean invariance and the translation groups.

For all latter groups the generators may be written as:
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Employing Lie’s differential equations (see Olver 1993),

the global transformations for all groups are given by

Gs1 : x̃2 = x2ec1 , r̃i = rie
c1 , ˜̄u1 = ū1ec1 ,

R̃ij = Rije2c1 ,
g
p′u′i = p′u′ie

3c1 ,
g
u′ip′ = u′ip′e

3c1 , · · ·

Gs2 : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1e−c2 ,

R̃ij = Rije−2c2 ,
g
p′u′i = p′u′ie

−3c2 ,
g
u′ip′ = u′ip′e

−3c2 , · · ·

Gs3 : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1,

R̃ij = Rije−c3 ,
g
p′u′i = p′u′ie

−c3 ,
g
u′ip′ = u′ip′e

−c3 , · · ·

Gtransl : x̃2 = x2 + c4, r̃i = ri, ˜̄u1 = ū1,

R̃ij = Rij ,
g
p′u′i = p′u′i,

g
u′ip′ = u′ip′, · · ·

Ggalil : x̃2 = x2, r̃i = ri, ˜̄u1 = ū1 + c5,

R̃ij = Rij ,
g
p′u′i = p′u′i,

g
u′ip′ = u′ip′, · · ·

(4)
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The variables c1 – c5 are the group parameters of the corre-

sponding transformations. The dots denote that also higher

order correlations are involved in the corresponding symme-

try.

The most interesting fact with respect to the latter

groups is that three independent scaling groups Gs1, Gs2,

Gs3 have been computed. Two symmetry groups corre-

spond to the scaling symmetries of the Euler equations. The

first one is the scaling in space, the second one scaling in

time. The third group (Gs3) is a new scaling group that

is a characteristic feature only of the one-dimensional tur-

bulent boundary layer flow. It is a new scaling symmetry

not obtained before. This is in striking contrast to the Eu-

ler and Navier-Stokes equations, which only admit two and

one scaling groups, respectively. Gtransl and Ggalil rep-

resent the translation symmetry in space and the Galilean

transformation, respectively.

The corresponding characteristic equations for the invari-

ant solutions (Oberlack 2001) read

dx2
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=
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c1ri
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dRij
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[3(c1 − c2) + c3]p′u′i

= · · ·
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In Oberlack (2001) it has been shown that the symmetry

breaking of the scaling of space leads to a new exponential

scaling law. Therein it was argued that physically it corre-

sponds to the outer part of a boundary layer flow, the wake

region. Thus, invoking the symmetry breaking constraint of

an external length scale (c1 = 0) the exponential scaling law

for the wake region of a ZPG turbulent boundary layer flow

has been obtained and further validated, e.g. in Khujadze

and Oberlack (2004). The characteristic equation for the

velocity will reduce to the following form:

dx2

c4
=

dū1

−c2ū1 + c5
(6)

Integrating this equation we obtain scaling law for the mean

velocity as follows:

ū1(x2) = k1 + k2e−k3x2 , (7)

where

k1 ≡ c5

c2
, k3 ≡ c2

c4

and k2 is a constant of integration.

For positive k3 the velocity law (7) converges to a con-

stant velocity for x2 → ∞ (k1 = ū∞). For a plane shear

flow this may only be applicable to a boundary layer type of

flow. In this flow the symmetry breaking length scale is the

boundary layer thickness.

As for the TPC functions Rij we have the equation:

dx2

c4
=

dRij

(−2c2 + c3)Rij
(8)

The solution of this equation gives the following:

Rij(x2, r) = e−k4x2Bij(r) (9)

Besided the latter we obtained the following scaling laws

also for the mean values and the TPC pressure-velocity func-

tions:
ū∞ − ū1

uτ
= α exp

“
−β

x2

∆

”
(10)

u′ip′(x2, r) = e−(k3+k4)x2Ei(r) (11)

Reθ Nmax × 106 ∆x+
1 , ∆x+

2 , ∆x+
3

N1 810 31.2 16, 0.04− 5, 5.5

N2 2240 138.9 15, 0.06− 5, 11

N3 2800 538 11, 0.06− 5, 10

Table 1: Parameters of performed simulations.

p′u′i(x2, r) = e−(k3+k4)x2Fi(r) (12)

where α, β, k3, k4 are universal constants and Bij , Ei, Fi are

only a function of the correlation distance r. From the equa-

tion (9) we may deduce two important results:

• In non-dimensional form the Reynolds stresses have the

form:
u′iu

′
j(x2)

u2
τ

= bij exp
“
−a

x2

∆

”
(13)

• The TPC correlation may be reduced to the correlation

coefficient using (13) and (9):

R[ij](r) ≡ Rij(x2, r)

u′iu
′
j(x2)

= B′[ij](r) (14)

where uτ is the friction velocity; bij are the non-dimensional

Reynolds stresses and a is a parameter independent of ’i’

and ’j’; B′
[ij]

is independent of x2; ∆ is the Rotta-Clauser

length-scale:

∆ ≡
Z ∞

0

ū∞ − ū1

uτ
dx2 =

ū∞
uτ

δ∗

while δ∗ is the boundary layer displacement thickness:

δ∗(x1) ≡
Z ∞

0

„
1− ū1

ū∞

«
dx2 (15)

The classical theory of turbulent boundary layer flow

leads to the classical log-law in the overlap region which

has the following form in the inner variables:

ū1(x2)+ =
1

κ
ln(x+

2 ) + B (16)

where κ and B are constants that have to be found from

experiments and/or DNS.

Here we would like to repeat the derivation of the log-law

from Lie group analysis performed first by Oberlack (2001).

In the equation (5) the assumption c1 = c2 leads to the

following ordinary differential equation:

dx2

c1x2 + c4
=

dū1

c5
(17)

The solution of this equation is:

ū1 =
c5

c1
ln(c1x2 + c4) + C1 (18)

where C1 is the integration constant. c1, c4, c5 are group

constants. This equation can be rewritten in the following

form using inner scaling:

ū1(x2)+ =
1

κ
ln(x+

2 + A+) + B (19)

where A+ is the additional constant in the logarithm.

NUMERICAL SIMULATIONS

For the verification of the new scaling laws a direct nu-

merical simulations (DNS) at Reθ = 810, 2240, 2800, where
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θ is the momentum loss thickness (see equation 20) were per-

formed (for details see the table 1) using a spectral method

with up to 538 million grid points (Khujadze and Oberlack

2004).

θ(x1) ≡
Z ∞

0

ū1

ū∞

„
1− ū1

ū∞

«
dx2 (20)

The code for the DNS was developed at KTH, Stockholm

(Lundbladh et al. 1999). The main aim of the simulations

were to validate the new exponential laws for mean velocity

profile, Reynolds stresses and TPC functions.

The simulations for the low Reynolds number case were

run for a total of 35000 time units (δ∗/ū∞, where ū∞ is the

freestream velocity) and the sampling for the statistics was

performed during the last 30000 time units. The simulations

at higher Reynolds numbers were run for 10000δ∗/ū∞ time

units. The statistical averaging was performed during the

last 8000 time units. The simulation times for latter cases

were smaller because of the high computer resources required

in these cases. However, the simulation time was in each

cases enough to get smooth statistics.

u+
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2

Figure 1: u+
i,rms : 7.9 (480 × 129 × 128), 31.2

(800 × 217 × 180) and 74 (800 × 361 × 280) million

grid points at Reθ = 810.
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Figure 2: u+
i,rms : 269 (2048× 513× 256) and 538

(4096× 513× 256) million grid points at Reθ = 2800.

We would like to give briefly the results of performed

DNS. The comparison between different resolutions at the

same Reynolds numbers (for ui,rms) is shown in Figs. 1

and 2. The difference between them is small even though

the number of points in each direction for the coarser grid

is reduced by a factor of 2. Fig. 1 shows resolution compar-

ison at Reθ = 810 for three different number of grid points,

beginning from ≈ 8 up to ≈ 74 million. As we see there is

no big difference between the cases and curves collapse into

one. The same picture is observed for the highest Reynolds

number in Fig. 2. In the latter case the useful region was

confined to 100 − 300δ∗|x=0 (total length of computational

box is 450δ∗|x=0, where δ∗|x=0 is the thickness of laminar

boundary layer flow) which corresponds to Reθ from 1850

to 2800.

DNS for Reynolds number Reθ = 2800 was done with

two different resolutions (see Fig. 2): N ≈ 270 and 538 mil-

lion grid points (2048 × 513 × 256 and 4096 × 513 × 256).

The jobs were run on the Hitachi supercomputer in Munich

(MPI version of the code) on 256 and on the IBM supercom-

puter using 128 CPUs (OpenMP version of the code) at TU

Darmstadt.
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Figure 3: Reynolds stresses u′iu
′
i

+
for different Reynolds

numbers: Reθ = 810; Reθ = 2800.

The comparison of Reynolds stress diagonal components

are shown in the Fig. 3 in plus units at Reθ = 810, 2800.
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Figure 4: mean velocity profilesat different Reynolds num-

bers: Reθ = 1850; Reθ = 2330; Reθ = 2800.

Fig. 4 displays mean velocity profiles from the last

simulation (Reθ = 2800) taken at different places of the

simulations box.

VERIFICATION OF THE SCALING LAWS

Exponential law

The mean velocity of the turbulent boundary layer data

is plotted in Fig. 5 for Reθ = 2240 in outer scalings. As

one can see from the figure, DNS and the theoretical result

(equation 10) are in good agreement in the region x2/∆ ≈
0.01− 0.15.

Using DNS we can find the constants in equation (13):

u′1u′1(x2) = 4.55e−7.2x2

u′2u′2(x2) = 2.7e−7.2x2

u′3u′3(x2) = 1.8e−7.2x2

(21)
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Figure 5: Mean velocity profile in log-linear scaling.

theoretical result from the law (10). DNS results

for the simulation.

Fig. 6 shows the comparison of the theoretical result (13)

with the DNS data in log-linear scaling at Reθ = 810. The

key result is that the constant in the exponent is the same

(a = 7.2) for all components of Reynolds stress tensor as

it follows from the equation (13). This is expressed by the

parallel dashed lines in Fig. 6 for the three normal stresses.

u′iu
′
i

+

x2/∆

Figure 6: Reynolds stresses in log-linear scaling. Upper,

lower and middle curves are u′1u′1, u′2u′2, u′3u′3 respectively.

theoretical results (21). DNS results at Reθ = 810.

u′iu
′
i

x2/∆

Figure 7: The same as in Fig. 6 but at Reθ = 2800.

The curves of equation (13) are shown in Fig. 7 compar-

ing them to the DNS results at Reθ = 2800. We see that

the results are in very good agreement.

The next result is shown in Fig. 8 when the plot of

u′1u′1 is shown at Reθ = 810, 2240. The exponential region

increases towards the wall as the Reynolds number increases.

In Fig. 9 the mean velocity profile is shown with ex-

ponential and log regions at low Reynolds number. The

constants in the equation (13) are: α = 9.4 and β = 9.0. As

for the log-law we found that κ = 0.38 and C = 3.7.

u′1u′1

x2/∆

Figure 8: u′1u′1 at Reθ = 810, Reθ = 2240

Reynolds numbers.

u∞ − ū1

uτ

x2/∆

Figure 9: Mean velocity profile for at Reθ = 1015.

log-law, DNS, exponential law.
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Figure 10: Correlation coefficient R22. Top plot: Reθ =

810. x2/∆ = 0.1, 0.12, 0.13, 0.144; Bottom plot: Reθ =

2240. x2/∆ = 0.095, 0.126, 0.16.
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The second important result is the verification of equa-

tion (14). The correlation coefficient in the case of ZPG

turbulent boundary layer flow (in the parallel flow approxi-

mation) has the following form:

R[22] =
u′2(x2, t)u′2(x2 + r2)

u′2u′2(x2)
(22)

Equation (22) is verified in Fig. 10: top plot corresponds

to Reynolds number Reθ = 810. TPC coefficients are plot-

ted at the different initial points x2/∆ = 0.1, 0.12, 0.13, 0.144

are located in the exponential region of the flow; Bottom plot

corresponds to Reθ = 2240 with x2/∆ = 0.095, 0.126, 0.16.

In both cases the lines collapse in one, that means that the

correlation coefficients are independent of the wall distance

x2 as it was suggested by the equation (14).
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Figure 11: Pressure velocity correlations DNS (Reθ =

810), theoretical result. Left figure: p′u′1; Right figure:

−p′u′2;

In Fig. 11 DNS results are compared to the theoretical

ones for the pressure-velocity correlations. The exponential

region for p′u′1 is x2/∆ ≈ 0.04−0.18, while the law for −p′u′2
is valid in the interval of x2/∆ ≈ 0.15− 0.22.

Modified log-law

In a recent paper by Österlund et al. (2000) the authors

performed two independent experimental investigations of

the behavior of turbulent boundary layers with different

Reynolds numbers Reθ = 2500 − 27000. The experiments

were performed in two facilities, the minimum turbulence

level wind tunnel at Royal Institute of Technology (KTH)

and the National Diagnostic Facility wind tunnel at Illinois

Institute of Technology. The aim of the experiments was

to understand the characteristics of the overlap region be-

tween inner and outer region of the boundary layer flow.

They state that no significant Reynolds number dependence

for the parameters describing the overlap region using the

classical logarithmic relation were found and that the data

analysis shows the viscous influence to extend within the

buffer layer up to x+
2 ≈ 200 instead of the previously as-

sumed value x+
2 ≈ 50. The parameters of the log-law are

constant: κ = 0.38, B = 4.1. The authors explain the result

with the low Reynolds number effects in previous experi-

ments.

Equation (19) has an additional constant A+ in the log-

arithmic function in comparison to the classical one.

ū+
1

x+
2

Figure 12: Mean velocity profile in inner scaling at Reθ =

2500. experiments and DNS data; theoretical re-

sults (equation (16)).

The classical log-law is compared to the DNS at Reθ =

2800 in Fig. 12. The constants for the log-law are: κ = 0.38

and B = 3.7.

ū+
1

x+
2

Figure 13: Mean velocity profile in inner scaling at Reθ =

2800. Parameters from Fig. 12.

In Fig. 13 the same velocity profile is shown but in nor-

mal scaling. The logarithmic region is located in the range

of x+
2 ≈ 30− 220.

ū+
1

x+
2

Figure 14: Mean velocity profile in inner scaling at Reθ =

2800 for the modified log-law. experiments and DNS

data; theoretical results (equation 19)

Figs. 14 and 15 show mean velocity profile for modified

log-law (see equation (19)) for log and normal scaling. The
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ū+
1

x+
2

Figure 15: Mean velocity profile in inner scaling. Parameters

from Fig. 14.

constants for the logarithmic law are: κ = 0.383, B = 3.7

and A+ = 5. As it is seen from these figures, the log-region

extends in comparison with the classical log-law.

Comparison of Figs. 12, 13, 14 and 15 shows that the

modified log-law better fits the DNS results. Namely in the

region shown by an arrow in Fig. 13, where classical log-law

does not fits perfectly with the DNS. The constants in the

log-law are almost the same in both versions of the law.

SUMMARY

In the present work a Lie group analysis of the TPC

equations is presented in the case of ZPG turbulent

boundary layer flow using the parallel flow assumption

(ū1 ≡ ū1(x2)). It is shown that the Lie group analysis helps

to gain more insight into the description of the turbulent

flow. This method provides a systematical procedure to

derive symmetries from a set of differential equations. The

following results were obtained:

• The new exponential scaling law for the mean velocity

profile, TPC functions, velocity-pressure correlations

and Reynolds stresses were found in the mid-wake re-

gion of flat-plate boundary layers;

• A new, third scaling group Gs3 (that is a charac-

teristic feature only of the one-dimensional turbulent

boundary layer flow) was found in the TPC equations

in contrast to the Navier-Stokes and Euler equations

which have one and two scaling groups, respectively.

Comparison of the DNS results to the theoretical ones is

very promising:

• The exponential law exists for all statistical quantities

as it was predicted by the Lie group analysis;

• Increase of the Reynolds number increases the region

where this law is valid;

• DNS allows us to find the constants in the formula of

the exponential laws;

• Statistics accumulation time is very important param-

eter for the validation of the exponential law.
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