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ABSTRACT
Fluctuations of the streamwise velocity are considered

as a sum of active and inactive parts.  The active and
inactive components of the streamwise Reynolds stress are
assumed to scale differently.  Because the active motions
produce Reynolds shear stress, the active component is
further assumed to be proportional to the Reynolds shear
stress.  This allows DNS data can be used to compute the
inactive component. A model of the inactive motion in the
inner and outer layers is proposed and a composite
expansion formulated. The composite expansion of the
inactive component, together with a previous composite
expansion of the Reynolds shear stress, allows the
streamwise Reynolds stress to be predicted as a function of
wall distance and Reynolds number. According to the
model the streamwise Reynolds stress is dominated by the
inactive component. This domination increases as the
Reynolds number increases.

INTRODUCTION
Consider the fully developed turbulent flow in a pipe or

channel where the wall to centerline distance is h and the
fluid viscosity is ν.  The mean velocity is  U(y) where y  is
the distance from the wall. The streamwise direction is x,
the spanwise direction z, and u, v, w are the fluctuation
velocity components.  Velocity scales are U0 , the centerline
velocity, and u* , the friction velocity.  The  Reynolds shear
stress     − < uv >   correlates (is independent of Re*) when
scaled with 

    
u

* ;      

    < uv >+ ≡< uv > /u*
2 (1)

However, in the last  few  years data has shown that the
streamwise Reynolds stress <uu>  does not scale with u*.   

    < uu >+ ≡< uu > /u*
2 (2)

This lack of scaling is illustrated in Fig.1 which displays
DNS data (Del Almo anf Jinenez (2003), Del Almo et
al(2004), Moser et al.(1999))  at several Reynolds numbers.

Townsend (1976) proposed that the streamwise
fluctuations consisted of two categories of motion; active
and inactive.  That concept is employed herein with the
additional assumption that these motions scale differently.
Since wall turbulence has a two layer structure, a correlating
function is proposed for each motion in each region.
Reynolds number effects are predicted by a  composite

expansion for each category of motion.   The initial
discussion of these ideas are found in Panton (2007).   After
a review of the formulation of the composite expansions,
this paper will investigate the effect of varying several
arbitrary parameters. One parameter, α, controls scaling the
inactive component.  The other,  P, is a measure of the
strength of the active component.

Proper correlation of   < uu >  is important because the
streamwise fluctuations have a close association with the
fluctuating wall shear stress, the fluctuating wall pressure,
and the turbulent kinetic energy.

ACTIVE AND INACTIVE MOTIONS
Townsend's concept of inactive motion has been

interpreted, extended, and modelled by several researchers
in the past.  Noteworthy papers are: Perry and Abell (1977),
Perry and Chong (1982), Perry et al. (1986), and Maursic et
al. (1997).  Marusic and Kunkel (2003), produced equations
representing inactive effects in boundary layers for all
distances. In these papers the   < uu >correlation is
completely inactive motions that are attributed to attached
wall eddies.  Townsend (1976) himself envisioned that the
inactive motion was a stramwise-spanwise motion
contributing to u and w fluctuations.  He chose the term
"inactive" motion envisioning that it makes no essential
contribution to the Reynolds shear stress.

All Reynolds stresses are time-averaged quantities.  As
such, certain instantaneous fluctuation motions average out
and make no essential contribution to the final values.

There are two distinct velocities that one can use for

scaling wall turbulence quantities;    U 0 and u
*
.  As the

Reynolds number increases 
    
u

*
/ U 0 → 0 and these

quantities separate.  There are other choices, however, they
are asymptotically equivalent.  For example     Uaveis
equivalent to     U0  or 

    
U0 − U ave ~ u

*
(the Zagarola-

Smits scale) is equivalent to 
    
u

*
.  Use of these alternate

scales may extend a correlation to lower Reynolds numbers,
and in this sense are better,  but they are not fundamentally
different.

The Reynolds shear stress correlates with 
    
u

*
 as a

scale. A composite expansion for     < uv >+ ≡< uv > /u*
2

represents the data for all wall distances to remarkible low
values of the Reynolds numbers.  Thus, active motions will
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scale with 
    
u

*
.  Inactive motions, by difinition do not make

an esssential contribution to the Reynolds shear stress.
Physically they are associated with eddies of  the outer
region.  The mean velocity in this region is, to zeroth order,

    U0, while vertical velocity fluctuations are of order 
    
u

*
.

Eddies are restrained in the normal direction by the wall;
however, they are not restrained in the streamwise direction.
It is not unreasonable to imagine that the scaling of the
inactive motions is some combination of 

    
u

*
 and     U0 .  In

fact, Degraaff and Eaton (2000) propose that the so-called

mixed scaling    U0 u* , introduced by Alfredsson and
Johnsson (1984), is the proper scale for   < uu > .

The peak values on Fig. 1 always occur  at about y+ =
15,  and are plotted along with some experimental

measurements as a function of     U 0 / u* in Fig. 2 .   The

points on Fig. 2 at very high values of      U 0 / u* are
atmospheric boundary layer measurements of Metzger and
Klewicki  (2001).  A dashed line on this figure has a slope
of one and corresponds to the Degraaff and Eaton(2000)
scaling.  The peak values are in the inner layer.  Data from
the outer layer at Y = 0.4 are plotted in Fig. 3.  An upward
trend is again observed, however, because of the scatter in
experimental data, the trend  conuld be interpreted
differently.  It should be noted that hot wire resolution
issues are not completely resolved.    Figures 1, 2, and 3

offer strong evidence that   < uu > +
is not scaled properly

to be independent of Reynolds number.

Properties of Active and Inactive Motions
To motivate a scaling law, let the streamwise velocity be

an active motion   uA  plus an inactive motion   uI .

        u = u I + u A (3)
It is not necessary to make a unique instataneous definition.
As discussed above, active motions make an essential
contribution to the Reynolds shear stress <uv>, while
inactive motions do not.  Another viewpoint would be that

    uI  and v  are statistically independent.  The correlation

of two statistically independent quantities is the product of
their mean values.  Because the mean   < v > is zero,

    < uI v > = < uI >< v > = 0 ( 4 )

Thus, the Reynolds stress in entirely active u motions in
agreement with the Towsend concept.

    < uv > =< (uA + uI ) v > =< uAv > (5)
Note that the mean of   < u > is zero, but it is possible that
the component motions have nonzero means.

    < uI > = − < u A > (6)

One would be negative and the other positive.

SCALING THE <uu> REYNOLDS STRESS
The streamwise Reynolds stress correlation consists of

an active part, inactive part, and a cross correlation of active
and inactive parts.

    < uu > = < u I u I > + 2 < u I uA > + < uA uA > (7)

Assuming that     uI and uA  are statistically independent, the
cross-correlation is equal to the product of the individual
means, thus inserting Eq. 6 gives

    < uu > = < u I u I > − 2 < u A >
2

+ < u A u A > (8)

Let us consider the proper scaling for each term in Eq. 8
Active motions are associated with the Reynolds shear

stress and therefore one would anticipate that

  < uAuA >would have the same scaling as     − < uv > .
Define

    < uA uA >+
≡ < uAuA > / u*

2
(9)

Scaling with 
    
u

*
  will produce an order one quantity for

limit   Re* → ∞ .
Similarly the mean of the active motion is scaled with

    
u

*
.

    < uA >
+

2
≡ < uA >2 / u*

2
(10)

If  this scaling is incorrect then a factor     u* / U 0( ) needs to
be inserted on the right side of Eq. 10.

It has been established experimentally, DeGraff and
Eaton  (2000)  and Metzger and Klewicki (2001) and by
DNS, Del Álamo and Jimenez (2003) that   < uu >does not
scale simply with 

    
u

*
.  Figure 2 illustrates this as

    < uu >+ ≡ < uu > / u*
2  is plotted vs 

    
U0 / u

*
.

Maximum values (in the inner region at about y+ = 15) and
values at     Y = y / h = 0.4  (in the outer region) continue to
increase with increasing 

    
U0 / u

*
(increasing   Re*).  Let

α be an exponent that gives an order one quantity in the

limit   Re* → ∞.

    
< uu ># ≡

< uu >

u*
2

u*
U 0

 
  

 
  = < uu >+ u*

U 0

 
  

 
  (11)

The  scaling of Degraaff and Eaton (2000) is α= 1.

In the limit   Re* → ∞ the nondimensional form of Eq.
8  must have one term on the right side to balance the left
side.  This can only be the inactive motion. Therefore

  < u I u I >  has the same scaling as Eq.
11.

    
< u I uI ># ≡ < uI uI >+ u*

U 0

 
  

 
  (12)

To  be of order one for limit   Re* → ∞, the terms in Eq. 59
need different scalings.

With the definitions, Eqs. 9-12, the nondimensional
form of Eq.9 is
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< uu >
#

= < uI uI >
#

− 2 < uA >
+

2
− < uAuA >

+
 

 
 
 

 

 
 
 

u*
U0

 
   

  (13)

At high Reynolds numbers the inactive motions dominate
  < uu > .

DATA ANALYSIS PROCEDURE
Regardless of the physical interpretation of Eq. 13, one

can, in complete generality, propose an asymptotic
expansion of the form,

    
< uu ># = fo ( y ) + f1( y)

u*
U 0

(Re* )
 
   

  (14)

The power α  is chosen to make the definition  ιn Eq. 11 of
order one.  The form of Eq 14 is proposed for both the inner
and outer regions.  If the same power α occurs for both

regions, that is, if there is no change in scaling of     < uu >
# ,

then the common part of the inner and outer functions is a
constant.

In order to evaluate the usefulness of Eq. 13, we will

insert data for     < uu >
# , model the terms

    

2 < uA >
+

2
− < uAuA >

+
 

 
 
 

 

 
 
 

, and solve for the inactive

correlation     < uI uI >
# .   Success is achieved if      < uI uI >

# is

independent of Reynolds number as   Re* → ∞ .
By definition the active motions are  essential to the

Reynolds shear stress. Assume that the correlation is some
constant M times the Reynolds shear stress.

    < uAuA >
+

= − M < uv >+ (15)

Since     < uv >+ is negative, M is positive.  Also assume that
the active mean is some number N times the Reynolds shear
stress.

    − 2 < uA >+ 2 = − 2N < uv >+ (16)
The constant N is negative.  The combination 2N +M =P  is
negative (− 1) for M=1, N  1.

With these assumptions Eq. 13 becomes

    
< uI uI >

#
= < uu >

#
− P (− < uv >+

)
u*

U 0

 
   

  (17)

For pipes and channels a composite expansion model
predictes the Reynolds shear stress and its dependency on y
and Re* (Panton 2005).  The relation is

    

− < uv >+ = 2 tan−1 2 y+ 

 
 
 

 

 
 
 ⋅ 1 − exp(−

y +

C+
)

 

 
 
 

 

 
 
 

−
y+

Re*
(18)

For calculations herein the constants were taken as
κ = 0.37,     C+= 6.78.
    A major effort of this paper will be to investigate the
trends for various choices of the parameters P and α. in
Eq.17.  The DNS data will be processed because it has

much more internal consistency than experimental data.  A
disadvantage of the DNS data is that the Reynolds numbers
are low .   At only the highest Reynolds number, Re* =
2003, or perhaps the highest two values, 2003 and 935, is
there minimal interaction between inner and outer layers.

Equation 17 is used to calculate the inactive component

    < uI u I > #
 by inserting DNS data for     < u u ># ,

choosing α = 1 , P = -1 , and employing Eq. 13 to compute
the Reynolds shear  stress.    Both the total and inactive
components are shown in Fig. 4 as a function of the outer
variable Y.   A slightly better collapse on the inactive
component is observed, especially at the higher Reynolds
numbers. The inactive stress will be represented by a
composite expansion.

    

< u I uI >Comp
# ( y+ , Re* ) = < uI u I > In

# ( y+ )

+ < uI u I > Out
# (Y ⇒ y+ / Re* ) − < u I uI > cp

#    (19)
The sum of an inner law, an outer law, minus the common
part gives a representation that shows Reynolds number
dependence and is uniformly valid.

An equation was chosen to represent the outer data. That
is, the trends of Fig. 4 excluding the behavior near Y=0.

    < uI u I > Out
# = (C cp − C cl ) 1 − Y[ ] 3 / 2

+ C cl (20)
The centerline value is Ccl, and the common part at Y = 0  is

    < u I uI > cp
# = C cp .  Values from Fig. 4 are

    C cp = 0 .245andC cl = 0.033  .

The same equation might not apply to pipe or
boundary layers flows because those flows have different
velocity wake components and, in the case of a boundary
layer, a different     − < uv >  correlation.

The inner region is correlated by solving Eq. 19 for
the inner function.

    

< u I u I > In

#
= < u I u I >

#

− (< u I u I > Out
# − < u I u I > cp

# ) (21)
Equation 20 gives the term in brackets, and DNS data is

used for the 
    
< uI uI ># .  Figure 5 displays the results.

There is a slight shift in the peak with Re*  that is not
represented by this level of approximation.   The data at

  Re*= 2000 was approximated by the equation.

    

< u I u I > In

#
= C 0 1 − exp(−

y
+

C
1

)
 

 
 

 

 
 

2

− C
0

− C
cp( ) 1 − exp(−

y +

C 2

)
 

 
 

 

 
 (22)

    C 0 = 0.724 ; C1 = 5.41 ; C 2 = 18.3

RESULTS
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The inactive streamwise stress computed as described
above with values of α = 7/8, 1, and 9/8 and values of P= -
0.5, -1, and -1.5 are given in Figs. 6 and 7.   A good result is

indicated if the curves become flat as     U 0 / u* increases.
Figure 6 gives the peak values in the inner region, and Fig. 7
displays values in the outer region at Y = 0.4.   The value of
P indicates the amount of active motion that is subtracted
fron the total streamwise stress in order to produce the
inactive portion.   Different P values shift the curves, but do
little to change the shape or improve the correlations.

On the other hand, the values of α, the scaling coonstant,
Eq. 11,  show a stronger effect on the shape of the curves.
On Fig. 7 α= 9/8 produces the flattest curves at high

Reynolds numbers (high     U 0 / u*), although α= 1 is
relatively satisfactory.

Fitting the DNS <uu>  data  at Re* = 2003, to yield
constants for Eqs. 20 and 22 yields a model with which one
can predict the the curvse for any Reynolds number. Figure
8 shows the trend of the peak values and the values at Y =

0.4. as functions of     U 0 / u * .  For this figure the value P =
-1 was assumed and various values of alpha investigated.

All curves crossa together at     U 0 / u* = 24.3   because this
is the fitting point at Re* = 2003.  For purposes of
comparison the alpha = 1 curves from this figure are also
plotted on Figs. 2 and 3.  The scatter displayed in the data of
Figs. 1 and 2 does not reveal a preferred value for alpha.

The last figure, Fig.9 displays the model predictions of a
composite expansion, (α = 1, P =  1) for <uu> , scaled in
the traditional way with 

    
u

*
,  for various Reynolds numbers.

The trends mimic the trends in DNS and experimental data.
The curves for the highest an lowest Reynolds numbers,

  Re * = 1 8 6 a n d10
5 ,  also have the inactive component

plotted.  From the inactive component the active part is
subtracted, it is negative, to yield the total stress. The active
component is always a small part of the total. At the peak it
subtracts about 0.5 from values from 6.5 to 13.  In the
middle of the outer layer the active part takes on ist largest
value about one.

SUMMARY
Townsend's idea of active and inactive turbulent

fluctuations was applied to the streamwise Reynolds stress
<uu> with the assumption that the components scale
differently.  Active motions scale as     < u A uA > /u *

2  while

inactive motions scale as     < uI u I > /(u*

2−
U 0 ) .  Mixed

scaling is α = 1. Using DNS data and assuming that the
active motions are proportional, with constant P, to the
Reynolds shear stress, a composite expansion is constructed
for the inactive stress.  Without further refinement of the
experimental data or extension of DNS to higher Reynolds
numbers, the choices α = 1 and P= -1 appear satisfactory. A
composite model of the total stress <uu> illustrates the
proper trends. It also shows that inactive motions dominate
the streamwise stress, and that they become more prominent
as the Reynolds number increases.
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Figure 9 Composite of streamwise Reynolds stress. Open
symbols at Re*=186 and 10^5 are inactive stresses.
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