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ABSTRACT 

The effect of a spatially localized time-periodical 
perturbation on the controllability of the wall turbulence is 
analyzed. It is shown that the imposed unsteadiness with a 
frequency in the median production range doubles the 
controllability of turbulent drag. It is further observed that 
the spatially averaged turbulent wall shear is synchronized 
in time with the imposed perturbation waveform. This is 
related to the synchronization of the unstable periodic orbits 
present in the near wall turbulence in connection with the 
regeneration cycle of turbulence producing coherent 
structures. 
 
INTRODUCTION 

Intensive direct numerical simulation investigations 
conducted during the last decade have clearly shown that 
the optimal and suboptimal control of the near wall 
turbulence are plausible and that appreciable drag reduction 
can be achieved through either adaptive or non adaptive 
schemes. The literature on this topic is vast now and the 
reader may consult Bewley et al. (2001) for some recent 
ideas and developments. The major shortcoming of these 
methods is the necessity of a dense distribution of sensors 
(wall shear stress gauges) and actuators (micro blowing-
suction jets) with a mesh size roughly equal to the viscous 
sublayer thickness to achieve significant drag reduction. 
Increasing the control mesh size decreases the efficiency of 
the control scheme. This not always well understood at a 
first glance. Indeed, the streamwise and spanwise scales of 
the coherent eddies near the wall are at least an order of 
magnitude larger than the required control space step. The 
quasi-streamwise vortices present in the buffer layer are 
about 300-500 wall units long and are separated by 100 
wall units in the spanwise direction. They generate 
turbulent wall shear by stretching spanwise vorticity zones 
through ejections and sweeps. However their regeneration 
and locations are random in time and space and their 
capture and subsequent control decision require 
significantly smaller time and space scales. This poses 
technical feasibility problems of the sub-optimal strategies, 
despite the important progress achieved in micro-smart 
technologies nowadays. Investigations of somewhat 
simpler large-scale control methods are therefore still 
necessary.  

The controllability can be easily defined and analyzed in 
some stability active control problems but is rather difficult 
to define in the absence of uncoupled modes as in the fully 
developed near wall turbulence. We will rather couple here 
the notion of controllability with that of predictability. It is 
without saying that rendering a process predictable (or 
deterministic-like) increases its degree of controllability. It 
is known that any unpredictable process 

! 

s n[ ]  can be 
decomposed into 

! 

s n[ ] = s" n[ ] + s# n[ ] , where 

! 

s" n[ ]  is a 
regular process and 

! 

s" n[ ]  is a predictable process 
orthogonal to 

! 

s" n[ ] . This result is known as Wold's 
decomposition (Papoulis, 1985). In the case of the near 
wall turbulence 

! 

s" n[ ]  may be interpreted as the part due to 
the coherent structures, while 

! 

s" n[ ]  is the incoherent part. 
The aim of a pseudo-robust control is then, to intervene 
locally in space somewhere at the wall to filter 

! 

s" n[ ] , to 
accentuate 

! 

s" n[ ]  to control the flow more efficiently at 
further downstream locations. 
     The aim of this investigation is to check whether a 
localized imposed unsteadiness improves the controllability 
of the near wall turbulence or not. We consider a fully 
developed turbulent channel flow. The flow is locally 
forced through oscillating blowing by a slot as shown in 
Fig. 1. The sizes of the slot in wall units in the streamwise 

! 

lx
+ and spanwise 

! 

lz
+ directions are shown on this Fig. 

Hereafter 

! 

( )
+  refers to quantities scaled by the inner 

variables namely the viscosity 

! 

"  and the shear velocity 

! 

u" =
"

#
 where 

! 

"  is the wall shear stress and 

! 

"  is the 

density. The time periodical blowing velocity is of the form 

! 

v0 = Asin 2"ft( ) . The imposed frequency is

! 

f
+

= 0.018  
and it is in the median production range of the turbulent 
kinetic energy spectra 

! 

S f( ) , as shown schematically in 

Fig.1. The time mean blowing velocity 

! 

v0
+

= A
+

= 0.14  is 
significantly small. There is no flow separation downstream 
the slot under these circumstances (Tardu, 2001). 
  
DIRECT NUMERICAL SIMULATIONS 
 The degree of controllability is determined by applying 
adaptive suboptimal strategy downstream of the oscillating 
blowing zone as shown in Fig. 1. Contrarily to the optimal 
control whose aim is to laminarize the flow in a given time 
interval, the suboptimal strategy attempts to decrease at 
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each time step wall shear and the related the cost function. 
The latter is: 

! 

J "( ) =
k

2#
" 2

w

$$ dS +
1

#
% dS

w

$$               (1) 

where 

! 

"  is the shear at the wall whose area is denoted by 

! 

", 

! 

"  is the action at the wall in the form of pinpoint 
blowing/suction distribution and 

! 

k  is a constant. The first 
integral above is clearly the energy expended to achieve the 
drag reduction. The control problem consists of 
determining the optimum 

! 

"  at each time step. The state 
equation is the Navier-Stokes equation: 

! 

"ui

"t
+
"uiu j

"x j
= #

"P

"xi
+$

"
2
u j

"x j
2

             (2) 

where 

! 

ui  and 

! 

xi  are respectively the instantaneous local 
velocity and coordinates  and 

! 

P  denotes the pressure . 
Mixed notations will be used here for convenience, i.e., the 
streamwise 

! 

x1( ) , wall normal 

! 

x2( )  and spanwise 

! 

x3( )  
directions will also be denoted respectively by 

! 

x , 

! 

y  and 

! 

z  
together with the corresponding velocity components 

! 

u  

! 

u1( ) , 

! 

v  

! 

u2( )  and 

! 

w  

! 

u3( ) . The equation (1) is subject to 
the following boundary conditions at the wall, 

! 

x2 = y = 0 : 

! 

u1 = 0

u2 = " x1, x3( )
u3 = 0

                             (3) 

The sensitivity of the cost function to the actuation 
modifications 

! 

"  is measured through Fréchet derivatives 
as in classical non-linear control theory. The variation of a 
functional 

! 

" #( ) , denoted by 

! 

˜ " #, ˜ # ( ) is given by: 

! 

˜ " #, ˜ # ( ) = lim
$%0

" # +$ ˜ # ( )&" #( )

$
=

F" #( )
F#

w

'' ˜ # dS             (4) 

where 

! 

F  stands for the Fréchet operator. In practice, the 
Navier-Stokes equation is discretized in time and space, 
and the resulting operators are transformed through the 
Fréchet operator. An adjoint problem is formulated and 
convenient choice of its boundary conditions allows to 

relate 

! 

DJ

D"
 d to the fluctuating adjoint pressure field at the 

wall. From 

! 

DJ

D"
 the actuation at the next time step 

! 

n +1 is 

computed either by a conjugate gradient method 

! 

" n+1
= " n #$

DJ

D"

% 

& 
' 

( 

) 
* 

n

 or by a research of minima 

algorithm. To be brief, we followed the same procedure as 
in (Bewley et al., 1993) only with some subtle differences. 
   The Direct Numerical Simulations (DNS) are used to 
model the situation depicted in Fig.1. The code is of finite 
difference type combined with fractional time procedure. 
The non-linear terms are explicitly resolved by an Adams-
Bash forth scheme. Periodical boundary conditions are used 
in the homogeneous streamwise and spanwise directions. 
The size of the computational domain is 

! 

4"h # 2h #1.33"h( )  in respectively the streamwise

! 

x , wall 
normal 

! 

y  and spanwise 

! 

z  directions, 

! 

h  standing for the 
channel half width. There are 

! 

(513"129"129)  
computational modes in 

! 

(x,y,z). Uniform and stretched 
coordinates are used in the streamwise, spanwise and wall 
normal directions. The first mesh from the wall is at 0.2 

wall units. The mesh sizes in the

! 

x  and

! 

z  directions are 

respectively 4.5 and 5.5 
  

! 

l" =
"

u#

. The Reynolds number 

based on the channel height and the centerline velocity is 

fixed at 

! 

Re=
hUc

"
= 4200 corresponding to 

! 

Re" =
h u"

#
= 180 . The computational time step is 

  

! 

"t
+

=
"t

l#

u$ =0.1.  

 
RESULTS 
   The important quantity in term of turbulent drag control is 
the spatially averaged wall shear stress downstream of the 
localized unsteadiness. Thus the space-mean shear 

! 

"[ ] t( ) =
1

Lx
+
Lz

+ 0

Lx
+

# " dx+
dz

+

0

Lz
+

#  is computed and its 

temporal evolution is analyzed. The zone wherein 

! 

"[ ]  is 

determined extends up to 

! 

Lx
+

= 2000 in the longitudinal 
direction downstream the blowing slot. The streamwise 
averaging extend is twice larger than the correlation length 
and an order of magnitude greater than the typical length of 
the coherent near wall vortices that is roughly 200 to 300 in 
wall units. The spanwise extend is that of the computational 
box, 

! 

Lz
+

= 753 . Fig. 2 shows the temporal evolution of 

! 

"[ ]  
for respectively under the effect of the localized blowing 
(LB) and suboptimal control (SC) alone, together with the 
dual control (DC), which is the combination of LB and SC. 
The spatially averaged 

! 

"[ ]  is scaled with 

! 

" s of the standard 
unmanipulated turbulent channel flow. It is seen that the 
drag downstream of the slot is reduced only by 3% under 
the effect of LB alone. LB indeed decreases the drag in an 
appreciable manner by roughly 30% in the zone 

! 

x
+

< 40  
immediately downstream the slot, but its effect relaxes 
rapidly at 

! 

x
+
" 400  at which 

! 

"  recovers its standard value 

! 

" s (Tardu, 2001). The suboptimal control results in 8% of 
drag reduction. The drag reduction id doubled by dual 
control and reaches 16%. It has to be emphasized that the 
unsteady blowing is taken into account in the cost function 
under the DC strategy. The increase in the efficiency of the 
suboptimal control in DC is therefore not incidental. The 
localized unsteadiness increases the suboptimal 
controllability undeniably. 
     The second striking feature of the results presented in 
Fig.2 is the remarkably smooth temporal evolution of 

! 

"[ ]  
that regularly oscillates in the dual control case after the 
transient period 

! 

t
+

= 50 . The frequency of the oscillations 
in 

! 

"[ ]  is exactly the frequency of the imposed unsteadiness. 
The amplitude of the oscillations is 5% and relatively small, 
but it has to be reminded that 

! 

"[ ]  results from averaging in 
a large domain. Clearly 

! 

"[ ]  is synchronized with the time 
periodical perturbation velocity 

! 

v0  under the effect of 
dual control.  
   The turbulence in general and the wall turbulence in 
particular can be seen as an infinite dimensional chaotic 
system. From this particular point of view, the imposed 
localized unsteadiness not only increases the controllability 
but also leads to a generalized synchronization of its 
spatiotemporal dynamics. The generalized synchronization 
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(GS) is included in the category of partial synchronization 
(PS) that refers to the situation wherein some state variables 
are synchronized but others are not (Boccaletti et al., 2002). 
The spatially averaged wall shear stress 

! 

"[ ]  is the 
synchronized flow quantity here. Due to the physics of 
localized unsteady blowing in high imposed frequency 
regime 

! 

f
+
" 0.01  (Tardu, 2001), wherein the unsteadiness 

is confined into the thin low buffer layer 

! 

y
+

< 10  it is 
unexpected that the spatially averaged flow quantities in the 
external layer are synchronized. That is however 
unimportant in the context of drag reduction, since the 
control target here is 

! 

"[ ]  which is clearly synchronized. We 
observed that the averaged turbulent wall shear stress 
intensity 

! 

" # [ ]
2

= #
2[ ] $ #[ ]

2  exhibits also some periodicity 

in time and is correlated with the 

! 

"[ ]  modulation. Fig. 3 

shows the temporal evolution of 

! 

" # 2[ ]
" # s

 in the case of dual 

control where 

! 

" # s is the turbulent wall shear stress intensity 
of the standard channel flow. The turbulent shear activity 
decreases up to 50% under essentially the effect of the 
suboptimal control. That has to be compared to the smaller 
16% decrease in 

! 

"[ ]  resulting in a pronounced 
disequilibrium of the wall turbulence. There is clearly a 
dominant frequency equal to that of the blowing velocity 

modulation in the 

! 

" # 2[ ]  evolution as it is seen in Fig.3. 

The 

! 

" # 2[ ]  oscillations are weak but still correlated to 

! 

"[ ] , Therefore, the spatially averaged state variables in the 
viscous sublayer are functionally related to 

! 

"[ ]  and the 
process can thus be categorized as GS.  
   The strategy used here is conform to the original idea of  
(Ott et al., 1990) in the sense that the aimed performance is 
obtained by making only small time-dependent 
perturbations to the wall normal velocity system parameter. 
The periodic perturbation is local in space and the 
subsequent adaptive suboptimal scheme propagates its 
effect to a large spatial domain. Both techniques are used in 
chaos control (Boccaletti et al., 2000). Periodic parametric 
perturbations applied to low and high dimensional systems 
with imposed frequencies corresponding to rational 
multiples of the frequencies of the periodic orbits (UPO’s) 
result in chaos synchronization (Mirus and Sprott, 1990). 
UPO’s have recently been found in Couette turbulence and 
some control strategies inspired from chaos control 
methodology have been proposed (Kawahara et al., 2006). 
The periodic motion embedded in the Couette turbulence is 
related to the regeneration cycle of the near wall Reynolds 
shear stress producing eddies. A directly similar 
investigation does not exist in the case of fully developed 
turbulent channel flow. However it is strongly suspected 
that UPO’s in channel flow are also presumably linked to 
the genesis of the near wall coherent vortices (Holmes et al., 
1996; Hamilton et al., 1995; Waleffe, 2003).  The imposed 
frequency 

! 

f
+

= 0.018  used here is precisely the 
regeneration frequency (commonly called ejection 
frequency 

! 

f e
+ ) of the coherent vortices in the low buffer 

layer at 

! 

y
+

= 20 where the turbulence production reaches its 
maximum (Tardu, 2002). The ejection frequency varies 

continuously from 

! 

f e min
+

" 0.001  at the wall to 

! 

f e max
+

" 0.03  in the log-layer. Further computations we 
conducted have indeed shown that PS does no more occur 
for 

! 

f
+
" f e max

+  strengthening the arguments presented here. 
   It has to be emphasized that the imposed perturbation is 
spatially local here, and the results are therefore more 
attractive from a feasibility point of view. The forcing is 
applied through boundary conditions contrarily to [Guan et 
al. (2004) wherein the streamwise velocity component is 
unidirectionnaly coupled with a target state in the whole 
flow domain. The adaptive suboptimal control applied 
downstream of the localized perturbation sorts out the UPO 
and leads to partial synchronization.  
   The dual and suboptimal controls are structurally 
different. Fig. 4 compares the wall shear stress and the 
associated coherent structures resulting from the suboptimal 
and dual control strategies. The SC suppresses drastically 
the quasi-streamwise vortices and the turbulent wall shera 
stress intensity decreases in an important manner as 
discussed before. In the case of DC, however, there are 
comparatively more structures, yet the drag decrease is 

twice larger. The ratio 

! 

" # 2[ ]
#[ ]

 is respectively 0.20 and 

0.25 in the SC and DC cases to be compared with 0.37 of 
the non-manipulated flow. Thus, both configurations lead to 
a turbulence state, which is strongly in disequilibrium, the 
degree of which is only slightly smaller in dual control. One 
may conclude that the DC plays the role of equilibrium 
regulator with more or less success.  
  

CONCLUSION 

In conclusion we have shown that adding an external 
frequency to the wall turbulence in the range of the 
regeneration cycle spectrum increases the suboptimal 
controllability of the turbulent drag. The second effect of 
the imposed unsteadiness is the coupling with preexisting 
UPO’s leading to a controlled wall shear stress that 
smoothly oscillates with appreciably less turbulent activity. 
The present strategy may be applied to achieve active 
control with a significantly less density of the wall 
controllers using several local oscillators recovering the 
entire broadband spectra of the wall turbulence in the 
production range. 
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Figure 1 Wall turbulent dual drag control strategy. The flow is perturbed locally by oscillating blowing through a localized 
slot. The suboptimal adaptive control is applied downstream (top). The frequency of the localized unsteady perturbation is in 
the median range of the turbulence spectra (below). 
. 
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Figure 2 In situ comparison of the temporal evolution of the spatially averaged wall shear stress under respectively the effect 
of the localized blowing and suboptimal control alone and the dual control that is their combination.  
 

 

 
Figure 3 Temporal evolution of the space-averaged turbulent wall shear stress intensity in the case of dual control. Relatively 
weak oscillations synchronized with the imposed unsteadiness frequency 

! 

f
+  are clearly visible.  
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Figure 4 The shear stress and wall coherent structures detected by 

! 

"2  in the case of suboptimal (a) and dual (b) control. 
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