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ABSTRACT

Using 2-D and 3-D Direct Numerical Simulations, we

present results of Tollmien-Schlichting (TS) wave cancel-

lation in a flat plate boundary layer, where the initial TS

wave is supposed to be cancelled out by a secound wave

of same amplitude, but 180◦ phase shifted. Considering

low electrically conductive fluids like seawater, an oscillat-

ing Lorentz force is used to generate the counter-phased

wave. Although the Lorentz force, hence the counter-phased

wave, are inhomogeneous in spanwise direction, the remain-

ing wave amplitude is reduced by more than 90% compared

to the uncontrolled case.

INTRODUCTION

Given a flat plate boundary layer in a low free stream tur-

bulence environment, the transition from laminar to turbu-

lent flow is initiated by the amplification of small-amplitude,

two-dimensional wave-like velocity fluctuations, the so-called

Tollmien-Schlichting (TS) waves. Since the turbulent wall

friction can exceed the laminar one by more than an or-

der of magnitude, damping of these waves, hence delaying

transition, reduces drag. Various methods of actuation have

been proposed, where modifying the mean velocity profile by

wall suction/blowing is probably the most common one. Al-

though successfully tested even during in-flight experiments,

mean velocity profile modification demands a comparably

large power input which degrades its efficiency. In contrast,

Milling (1981) reported experimental results of wave can-

cellation by superposition of a counter-phase wave using

vibrating wires, requiring only a fraction of control power

input. Following this principle, several numerical and ex-

perimental works appeared since then, e.g. Liepmann and

Nosenchuck (1982) and Kozlov and Levchenko (1987).

If the fluid under consideration is low conductive, such

as seawater with an electrical conductivity σ ≈ 5 S/m, a

Lorentz force acting directly within the fluid is able to con-

trol the flow (Albrecht et al., 2006). Driven by an external

electric field, almost arbitrary time signals may be gener-

ated. An application to wave cancellation is obvious, but,

to our knowledge, has not been published before. In the

present study, we investigate this numerically.

The paper is organized as follows. In the subsequent

section, we give a detailled description of the problem and

the computational domain. Lorentz force actuator and the

numerical model are introduced in section “Methods”. The

“Results” section covers extensive parameter variations in

both 2-D and 3-D, followed by a summary and discussion.

PROBLEM DESCRIPTION

We consider the transitional flat plate boundary layer

flow of a low electrically conducting fluid. The coordi-

nates and flow variables are nondimensionalized using the

inflow displacement thickness δ1 and the free-stream veloc-

ity U∞, respectively, yielding an inflow Reynolds number

Rein = U∞δ1/ν = 585 with ν denoting the kinematic viscos-

ity. Schematically shown in Fig. 1(a), the computational do-

main Ω starts downstream of the flat plate’s leading edge at

x = −250, where x, y, z denote streamwise, wall-normal, and

spanwise coordinate, respectively. Artificial disturbances are

introduced in a region xd0 = −194 ≤ x ≤ xd1 = −138 near

the laminar inflow boundary by means of a body force oscil-

lating at a fixed frequency parameter

F+ =
2πfν

U2
∞

· 106 = 108 (1)

where f is the frequency. Using the shape function vs(x)

given by Fasel (2002), the non-dimensional, 2-D body force

term reads

Fd(x, y, t) = A2d vs(x)vr(y) cos
Rein F+

104
t (2)

with

xd0 ≤ x ≤ xc : vs = 1

48
(729 ξ5 − 1701 ξ4 + 972 ξ3)

ξ =
x − xd0

xc − xd0

xc ≤ x ≤ xd1 : vs = − 1

48
(729 ξ5 − 1701 ξ4 + 972 ξ3)

ξ =
xd1 − x

xd1 − xc

0.01 ≤ y ≤ 0.39 : vr(y) = 1

2
(1 + cos π(y − 0.2)/0.19)

where xc = 1

2
(xd0 + xd1) is the center of the disturbance

strip and vr(y) restricts the body force to the near-wall

region. Since the disturbance input is uniform in z, a two-

dimensional TS wave emerges, growing as it propagates

downstream. This initial wave is supposed to be canceled

out by a counter-phased wave, originating from a Lorentz
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Figure 1: (a) Computational domain Ω, actuator design and resulting Lorentz force. (b) Position relative to neutral stability

curve.

force actuator placed at the coordinate system’s origin.

To prevent unphysical reflections at the outflow boundary

(n · ∇)u = 0 at x = 550, the remaining wave is artificially

damped downstream of x = 510 by a sponge layer technique

(Guo et al., 1996). Further boundary conditions include a

Blasius velocity profile at the inflow, no-slip condition u = 0

at the wall, and a second outflow condition at the free-stream

boundary y = 50. Fig. 1(b) summarizes the main features

of the computational domain relative to the neutral stability

curve.

Since wave cancelation assumes linear superposition, we

will consider cases where either disturbance input or actua-

tor are turned off. To simplify matters, we use the following

notation: Type-10 refers to the uncontrolled flow (distur-

bance input on, actuator off). Type-01 is used to study

the wave generated by the actuator only (disturbance input

off, actuator on), whereas type-11 denotes the superposition

(both disturbance and actuator on), which is the default

unless otherwise stated.

METHODS

Lorentz force actuator

A Lorentz force F = j × B arises from magnetic induc-

tion B and electric current density j. The latter is described

by Ohm’s law in moving media j = σ(E + u× B), where

E and u denote an external, applied electric field and the

velocity field, respectively. When assuming B ≈ 1T and

u ≈ 1m/s, due to the low electrical conductivity, the in-

duced current density σ(u× B) is insufficient to generate a

reasonable Lorentz force. Hence, an external electric field E

has to be applied. Being much larger than the induced field

u × B, the applied one dominates Ohm’s law, simplifying

the Lorentz force to F = σ(E × B). With the magnetic

Reynolds number being in the order of 10−7, the low induc-

tion approximation holds, where E and B can be computed

decoupled from the velocity field during pre-processing as if

the fluid was at rest. Finally, both fields are governed by

the electro- and magnetostatic equations, thus determined

by the actuator’s geometry only. We use a periodic array

of flush-mounted, streamwise aligned, alternating stripes of

permanent magnets and electrodes of changing magnetiza-

tion orientation and polarity, respectively, each having a

constant width a and a length La. Solving Laplace’s equa-

tion for the scalar electric potential ∇2φ = 0 by a standard

second order finite difference scheme on the computational

domain ΩEM shown in Fig. 2 yields the electric field via

E = −∇φ. Due to the symmetry of the problem, it is suf-

ficient to actually calculate only one fourth of the period

length in spanwise direction and half the actuator’s length

La plus a certain far-field region chosen as Lf = 3a.

H

U∞

a

y
x

z

1
2La

Lf

Lf

Figure 2: Domain ΩEM

for the computation of the electric and magnetic field.

The electric potential is set to φ0 at the electrode’s

surface and zero at z = a and the far-field boundaries

x = La/2 + Lf , y = Lf , while symmetry conditions were

applied at x = 0, z = 0 and at the bottom wall not covered

by the electrode.

The magnetic induction within ΩEM is obtained from

Akoun and Yonnet’s analytic solution (Akoun and Yonnet,

1984) for a rectangular surface

(

Bx

By

Bz

)

=
M0

2π

1
∑

i=0

1
∑

j=0

(−1)i+j





ln(R − Si)

arctan
SiTj

Ry

ln(R − Tj)



 (3)

where

Si = z − a − (−1)i a

2
(4)

Tj = x − (−1)j La

2
(5)

R =

√

S2
i + T 2

j + y2 (6)

Ensuring a balanced number of north and south poles, we

included six surfaces to model the periodic array of magnets:

Three adjoining to the left (N-S-N) and two to the right (N-

S), where the outer ones contributed less than 1% to the

magnetic induction in the symmetry plane z = a. Using an

odd number of surfaces would result in an unphysical change

of the sign of By beyond a certain distance off the wall. Both
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Figure 3: Spanwise distribution of the Lorentz force at the

symmetry plane x = 0 and different wall-normal positions.

fields were validated using a commercial Maxwell-Solver and

experimental data from Weier (2006).

Figure 3 shows the resulting Lorentz force at the sym-

metry plane x = 0, where it is purely streamwise oriented.

Being inhomogeneous in spanwise direction z with strong

peaks appearing above the electrode’s and magnet’s edges,

the force remains almost entirely streamwise up to a distance

a off the actuator’s ends. Near the ends, it has significant

wall-normal and spanwise components. Its decay in wall-

normal direction is approximately exponential and directly

related to the actuator’s stripe size a, hence, a is also referred

to as penetration depth. Similarly, the spanwise inhomo-

geneity reduces with increasing y. A non-dimensional force

amplitude is given by the modified Hartmann number

Z =
j0M0a2

8πρU∞ν
(7)

describing the ratio of Lorentz and viscous forces, where

j0 = φ0σ/a, M0, and ρ denote the applied current density,

the magnetization of the permanent magnets, and the fluid

density, respectively. It is related to the interaction param-

eter N via

N =
Z

Rein

(

π

a/δ1

)2

(8)

For 2-D simulations, we calculate the spanwise average

of the force, which is approximately described by

F =
π

8
j0M0 e−πy/a ex (9)

when neglecting the non-streamwise components found near

the actuator’s ends. To produce a counter-phased wave,

the force oscillates sinusoidally in time using the TS wave

frequency and a phase angle ϕ relative to the uncontrolled

flow’s wall shear stress oscillations at x = 0. Consequently,

we will use the rms-value Zrms = Z/
√

2 in the following.

Navier-Stokes solver

The incompressible, non-dimensionalized Navier-Stokes

equations

∂u

∂t
+ (u∇)u = −∇p +

1

Rein
∇2u + F (10)

∇ · u = 0 (11)

including the Lorentz force term F are integrated using

a well-established spectral element solver by Henderson
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Figure 4: Streamwise velocity fluctuations u′ along a line

y = 1 for a = 4.5 and different Zrms. For the uncontrolled

case, both u′ and its root mean square value u′

rms are shown.

and Karniadakis (1995) which has already been applied to

various MHD problems (Posdziech and Grundmann, 2001;

Mutschke et al., 2006; Albrecht et al., 2006). Extending

over 800 × 50 units, the computational domain is decom-

posed into 85× 13 spectral elements of polynomial degree 7.

We chose an element size of ∆x = 10 and 0.1 ≤ ∆y ≤ 20,

except for the vicinity of the actuator, where ∆x is refined

to 5. The non-dimensional time step is 0.05, corresponding

to 2000 timesteps per TS wave period. For 3-D calculations,

the spanwise direction is assumed to be periodic, allowing

for a Fourier ansatz for the flow variables, where 32 modes

were used.

RESULTS

2-D simulations

In this section, we will present results obtained from 2-D

calculations. Although the “real” Lorentz force is inhomoge-

neous in z, only 2-D runs using the spanwise averaged force

allow for comprehensive parameter variations.

TS waves usually cause a maximum streamwise velocity

fluctuation u′(t), defined as the difference between instan-

taneous velocity u(t) and its time average u, near y = 1.

Figure 4 shows u′ at t = 25000 along a line y = 1 throughout

the domain for the uncontrolled case and different control

force amplitudes. As expected, the uncontrolled fluctua-

tions grow with increasing x. When applying the oscillating

Lorentz force, the second wave generated at the actuator

reduces the overall fluctuations by superposition. Given a

penetration depth a, there is an optimum Lorentz force am-

plitude yielding maximum TS wave damping. For a = 4.5,

it has been found to Zrms = 0.27 (solid line). Lower force

amplitudes (for example, Zrms = 0.21, dashed line) do not

”fully cancel“ the wave, while increasing the force amplitude

beyond the optimum value causes a phase-shifted wave (for

example, Zrms = 0.32, dotted line).

The root mean square value of u′, for clarity plotted

for the uncontrolled wave only, is appropriate to confidently

yield a wave amplitude at every x. Accounting for the

boundary layer growth, we finally determine the local TS

wave amplitude by finding the maximum root mean square

value û′

rms over the wall-normal direction at given down-

421



 65
 70
 75
 80
 85
 90
 95

 100

 2  3  4  5  6  7  8

da
m

pi
ng

/%

a

3-D

  2-D

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Z
rm

s

3-D

Figure 5: Maximum TS wave damping found for different a,

and corresponding force amplitudes Z.
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Figure 6: Comparison of TS waves generated by the actu-

ator (type-01) and the disturbance input (type-10) at three

downstream locations.

stream position x:

û′

rms(x, z) =
∞

max
y=0

u′

rms(x, y, z) (12)

Measured representatively at x = 170, Fig. 5 shows the

maximum damping (defined as 1−û′

rms/û′

rms,Z=0
) achieved

for different a, as well as the corresponding force ampli-

tudes Zrms. The global maximum damping of 97% is found

at a = 5.5, Zrms = 0.40, and a phase angle ϕ = 3.13

rad (179.3◦). At different penetration depths, however, the

actuator performs similarly well if Zrms is adjusted accord-

ingly. This allows for a damping > 90% within a range

4.5 ≤ a ≤ 7.5. Since the dimensional stripe size a · δ1
is usually fixed in an application, this is of practical im-

portance: Varying the free-stream velocity, for example,

changes δ1, and the actuator will be operated at varying

non-dimensional a.

Since the amplitude reduces only gradually after actu-

ation, there must be an evolution of the canceling wave.

Figure 6 shows two waves generated by the actuator only

(type-01, dashed/dotted lines) at different a, and the initial

TS wave without actuation (type-10, solid line) for refer-

ence. Immediately after actuation at x = 10, it is clearly

shown that the major perturbation energy has been fed into
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Figure 7: TS wave amplitude vs. x for uncontrolled, 2-D

force, and 3-D force case.

the flow below y = 1.5. The maximum amplitude is found

at y ≈ 0.5 for both a, which is well below its usual position

y ≈ 1. While the maximum amplitude for the case a = 5.5

(dashed line) is clearly larger here, both waves tend to ap-

proach each other as well as the ”natural“ TS wave shape.

Optimum cancelation is achieved not until one wave length

downstream the actuator’s end.

3-D simulations

Now, we will compare results from 3-D calculations us-

ing the ”real“, inhomogeneous Lorentz force distribution

with the previous 2-D case. Plotted in Fig. 7, the uncon-

trolled TS wave (Z = 0, dotted line), being excited in the

already unstable region beyond branch I of the neutral sta-

bility curve, grows until it reaches branch II at x = 372

(local Re = 1193), which is in agreement to nonparallel lin-

ear stability theory (LST) results published by Herbert and

Bertolotti (1991). Beyond this point, it decreases again,

eventually being damped strongly within the sponge region

near the outflow boundary. The dashed line represents the

global maximum damping found for a 2-D force (a = 5.5,

Zrms = 0.40, ϕ = 3.13 rad): Downstream of the actuation

at −9 ≤ x ≤ 9, the amplitude gradually reduces by more

than an order of magnitude. For x > 100, it oscillates at a

level û′

rms ≈ 10−4.

When applying an inhomogeneous force (3-D case, solid

lines) at the same conditions a, Z, ϕ, due to the four-peak

structure, the TS wave is no longer purely two-dimensional

after actuation, but modulated in spanwise direction. To de-

termine its amplitude and two-dimensionality, we extracted

the û′

rms-value from the peak plane z = 0 (named peak

amplitude in the following) and performed a spanwise FFT

at these û′

rms (x,y)-positions, respectively. Following the

spanwise distribution of the force, the flow’s structure is

symmetric in z as well. Therefore, all odd modes are zero,

and for clarity, only the first three non-zero modes are shown.

All modes except mode 0 being zero would signal a perfectly

two-dimensional TS wave.

Similar to 2-D, the mean wave amplitude (mode 0) re-

duces during actuation, but higher modes initially rise from

zero to almost the same level as mode 0, thus indicating

a highly three-dimensional TS wave, and actually increase

the peak amplitude temporary. For x > 30, however, all

modes decrease, and the higher modes quickly settle down

around 10−7. Finally, at x ≈ 180, the TS wave can be
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tor using the exponential force Eq. (9), and the exact, but
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considered two-dimensional again, where peak and mean

amplitude must coincide. Further downstream, the wave

evolves according to LST.

Again measured at x = 170, the damping for the 3-D

case is included in Figure 5. Compared to the 2-D case it is

only slightly degraded.

Is detailled actuator modelling neccessary?

We now want to answer the question whether detailed

modeling of the (finite length) actuator is generally neces-

sary. As mentioned above, the Lorentz force decays approx-

imately exponential. Implementing the simple analytical

expression given in Eq. (9) would be way quicker, however,

this neglects the reduced force magnitude and additional

non-streamwise force components near the actuator’s ends.

For this simple model, end effects were included via an ex-

ponentially decaying force also in streamwise direction up-

and downstream of the actuator. Figure 8 compares the

instantaneous disturbation velocity u′ = U − U extracted

from a line y = 1 for the exponential and the exact (though

2-D, i. e. spanwise averaged) force using a type-01 setting.

We find a small phase shift of 3.5◦, and the maximum u′

decreases by 1.4%, (û′

rms decreases by 1.6%). Using the

parameters which yield optimum cancelation for the exact

force, the TS wave damping in a type-11 simulation reduces

to 94%.

SUMMARY AND DISCUSSION

In the present paper we have investigated the effect of an

oscillating Lorentz force on the evolution of TS wave. We

have shown that, in general, significant amplitude reduction

is possible. Depending on the force amplitude Zrms and

penetration depth a, a damping > 90% is found for a range

4.5 ≤ a ≤ 7.5, which is comparable to other published results

on wave superposition. Due to the spanwise inhomogeneity

of the Lorentz force, the canceling wave, therefore the result

of the superposition, is highly three-dimensional. Spanwise

modes rise during actuation, however, the flow being sec-

ondary stable with fluctuations not exceeding the stability

threshold of û′

rms ≈ 0.01 at any time, they decay within

O(100) streamwise units. In turn, failing to sufficiently

damp the primary amplitude, yet exciting spanwise modes

due to the inhomogeneous Lorentz force, certainly triggers

transition. However, considering the rather dramatic sec-

ondary growth rates, a secondary unstable flow is likely to

become turbulent soon, anyway.

Cancelation results from 2-D calculations using a span-

wise averaged Lorentz force reasonably correspond to 3-D

simulations, allowing for quick investigation of the parame-

ters involved. Applying the analytical but approximate ex-

ponential Lorentz force distribution further simplifies mod-

eling at the expense of a 2% accuracy loss.

Finally, the elaborate, but manual adjustment of phase,

penetration depth and force amplitude at this quite simple

actuator geometry still leaves open questions: What is the

optimum distribution of the Lorentz force? Does the effi-

ciency improve if the canceling wave is introduced via a low

amplitude, but traveling Lorentz force? What is the effect of

different wave forms? In an application, this may easily be

achieved using segmented electrodes and an adequate elec-

tric current, respectively. However, the increased number of

parameters requires an automatic optimization tool, which

is currently being implemented.
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