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ABSTRACT

In the context of LES modeling, we consider a high-

Reynolds-number complex turbulent flow to be one in which

the assumptions of a Kolmogorov inertial range and small-

scale isotropy are not valid. This may be due, for example,

to geometric “complexity” such as a solid wall, or due to

complexity of the physics involved, such as turbulent com-

bustion. In either case, since these assumptions underly

virtually all subgrid models, such flows require further mod-

eling. To address this problem, we consider optimization as

a tool to formulate LES models. This so-called optimal LES

formulation has the advantage that it is formulated indepen-

dent of any assumptions regarding the structure of the small

scales. It also makes explicit the statistical information that

underlies the resulting model. The primary inputs into the

model formulation are several small-separation multi-point

correlations. The assumptions of small-scale isotropy and

the Kolmogorov inertial range scaling are sufficient to model

these correlations, and produce an optimal LES model. In

complex turbulent flows, where these assumptions are not

valid, the optimization approach essentially reduces the LES

modeling problem to one of representing the anisotropic,

inhomogeneous multi-point correlations with small separa-

tions. Another advantage to this approach is that the

multi-point correlations provide a way to directly recover

turbulence statistics from the LES statistics.

In this paper, we discuss both the general optimization

approach and its application to isotropic turbulence and tur-

bulent channel flow.

INTRODUCTION

One of the most promising techniques for the predic-

tion of turbulent flows is that of Large Eddy Simulation

(LES), in which an under-resolved representation of the tur-

bulence is simulated numerically by modeling the effects of

the unresolved small-scales on the simulation. While such

simulations have been applied in a number of flows with

reasonable success, there are several outstanding problems

limiting LES’s applicability as a general purpose engineer-

ing tool. Chief among these is the application of LES to

so-called “complex” turbulent flows. In such flows, the

assumptions of small-scale isotropy and a Kolmogorov iner-

tial range on which many LES models are predicated, are

not valid, because strong inhomogeneity and/or additional

physical phenomena occurring at the small scales mean that

dissipation of kinetic energy is not the dominant feature

of the small-scale turbulence. The best known example of

this complication to LES modeling is near-wall turbulence,

but there are numerous other examples, including turbulent

combustion, where the chemical reaction occurs at the small

scales, and turbulent particle laden flows, in which the inter-

action with inertial particles occurs at small scales.

The optimal LES formulation (Langford and Moser,

1999; Langford, 2000) provides a framework in which to

address these issues and to develop and analyze LES models

and simulations. Optimal LES modeling has been found to

produce accurate LES simulations when based on reliable

statistical information (Langford and Moser, 2004; Zandon-

ade et al., 2004; Volker et al., 2002), so the primary challenge

in the development of LES models in the optimal LES frame-

work is obtaining models for this statistical information.

What is required are models for multi-point velocity correla-

tions. When small-scale isotropy is a valid assumption, the

Kolmogorov theory and isotropy are sufficient to construct

expressions for the correlations that allow optimal LES mod-

els to be formulated (Zandonade, 2007; Chang and Moser,

2007), and the LES models perform well (Zandonade, 2007).

In essence, the optimal LES formulation yields models valid

for small-scale isotropy that are comparable to commonly

used models, because they are based on the same assump-

tions regarding the small-scales. For complex turbulent flows
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Figure 1: Mean and rms velocity profiles in wall coordinates from LES ( ), DNS of Moser et al. (1999) ( ) filtered

DNS ( ). Shown are (a) mean velocity, (b) rms streamwise velocity urms in channel flow at Reτ = 590, with Fourier

truncation filter widths of ∆x+ = 116 and ∆z+ = 58

however, the optimal LES formulation provides a frame-

work to include affects of anisotropy and complex small-scale

physics, provided information regarding the small-scale cor-

relations is available.

In this paper, we briefly describe the optimal LES formu-

lation and its ability to model complex turbulent flows. The

problem of representing small-scale multi-point correlations

is then discussed, with results from complex (wall-bounded)

turbulence. The use of such correlation models to recover

turbulence statistics from LES statistics is described, and

finally, some concluding remarks are provided.

OPTIMAL LARGE EDDY SIMULATION

The starting point for the development of LES is the

definition of a spatial filter ·̃, which can be applied to the

Navier-stokes equations to obtain an equation for the filtered

velocity ũi:

∂ũi

∂t
= −

∂ũiũj

∂xj
−

∂p̃

∂xi
+

1

Re

∂2ũi

∂xj∂xj
+Mi, (1)

Where Mi is the sub-grid model (force) term, which includes

the divergence of the sub-grid stress as well as terms that

arise when the filter does not commute with differentia-

tion. The problem in LES, of course, is to model Mi.

However, in this context, the filter is a mapping from the

infinite-dimensional space of Navier-Stokes solutions to a

finite dimensional space of computable LES solutions. In

essence, in this definition we are including discretization in

the filter operator. This makes the filter (mapping) non-

invertible, and so there is insufficient information in the

filtered field ũ to uniquely determine the evolution of ũ. It is

thus appropriate to consider this evolution to be stochastic,

and define the LES model statistically. Let w be the out-

put of an LES, as distinct from the filtered turbulence. An

important result due to Pope (Pope, 2000; Langford and

Moser, 1999) is that an LES w will match the one-time

statistics of filtered turbulence ũ if and only if the model

m(w) of M is given by

m(w) = 〈M(u)|ũ = w〉 (2)

This model also minimizes the difference between M and m

(in the mean-square sense), and so it has all the properties

that one could ask of a sub-grid model. We therefore call it

the ideal sub-grid model.

Unfortunately, the conditional average in (2) cannot

practically be determined, since the number of conditions

is the number of degrees of freedom in the LES. However, it

can be estimated using stochastic estimation (Adrian et al.,

1989) which is a well-established technique for estimating

conditional averages. The result is a class of optimization-

based LES models as first proposed by Adrian (1990). Such

models have been named “optimal LES” models because the

stochastic estimation yields an optimum (minimum mean-

square error) approximation of the conditional average.

It has been found that it is generally sufficient to approx-

imate the subgrid model term M as linear in the LES vari-

ables (Zandonade, 2007; Volker et al., 2002). In this case,

the optimal LES model is expressed:

m′ =
X

k

Lk · w′
k (3)

〈ũ′
jM〉 =

X

k

Lk : 〈ũ′
j ũ

′
k〉 (4)

where the array of second-ranked tensors Lk are the lin-

ear estimation coefficients, and the indices j and k specify

which vector degree of freedom is used for the estimation

(e.g. point value or Fourier coefficient). Note that the L

are determined from the correlations of the filtered veloci-

ties with themselves and with the model term M. It is these

correlations that encode the characteristics of the unrepre-

sented small scales, and that reflect whether (or not) they

are isotropic or exhibit an inertial range. In the optimal LES

formalism, it is these correlations that we, as modelers, are

responsible for providing.

Tests of Optimal LES in Channel Flow

To test the ability of such optimal LES models to produce

accurate LES, the correlations appearing in the equation for

L (4) were determined from available DNS data for both

isotropic turbulence and turbulent channel flow (Langford

and Moser, 2004; Zandonade et al., 2004; Volker et al., 2002;

Moser et al., 2007). Here we recall example results for the

channel flow at Reτ = 590.

In the study by Volker et al. (2002), filtering was based

on Fourier truncation in the wall-parallel directions, while

no filtering in the wall-normal direction was employed. As

pointed out by Härtel and Kleiser (1998), in the absence of

wall-normal filtering, the contribution of the subgrid term to

the resolved-scale energy equation is positive near the wall,

which is due to the subgrid contribution to the transport

of energy from the production peak toward the wall. To

ensure that this transport property of the LES model was

well represented, Volker et al. (2002) formulated the model

to estimate the subgrid stress (rather than its divergence)

in terms of the Fourier-transformed local (in y) velocities
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Figure 2: Mean velocity (left) and rms streamwise velocity fluctuations (right) in a turbulent channel at Reτ = 590. The LES

was performed using the filtered boundary optimal LES formulation of Moser et al. (2007).

and their y-derivatives. The result was a remarkably good

LES, which accurately represented the mean velocity, fil-

tered Reynolds stress tensor and spectra (see figure 1 for

example).

The optimal LES formulation was also shown to yield

good simulations when wall normal filtering is applied

(Moser et al., 2007). In this case, in addition to Fourier trun-

cation filters in the wall-parallel directions, a Fourier trun-

cation in the wall-normal direction was used, in a domain

that extended beyond the walls. In this way, the wall was

filtered in addition to the turbulence. This approach can be

considered to be an LES version of an embedded boundary

formulation. See Moser et al. (2007) for further discussion of

the wall treatment. In this formulation, optimal LES based

on DNS statistical data from Moser et al. (1999) is used

for the volumetric subgrid term, and the results are again

remarkably good (see figure 2).

The results described above demonstrate that the opti-

mal LES formalism does yield accurate LES models even in

complex turbulent flows in which assumptions of isotropy

and a Kolmogorov inertial range are invalid. However these

assumptions were replaced with statistical data obtained

from DNS, so by itself, the optimal formulation does not

provide a practical predictive model for wall-bounded LES.

The challenge of LES modeling in such complex turbulent

flows has been reduced to that of modeling the input corre-

lations.

CONSTRUCTING MODELS FOR OPTIMAL LES CORRE-

LATIONS

The correlations appearing in (4) are essentially two-

point correlations of the filtered velocities with themselves

and the model term M . In Cartesian tensor notation, we

need to know the following correlations:

〈ũj(x
′)ũk(x′′)〉 and 〈Mi(x)ũk(x′′)〉. (5)

where x′ and x′′ are the spatial locations associated with

the state variable indices j and k respectively in (4). We

do not, however, generally have theory for these two-point

correlations of filtered and model quantities. But we do

have theory for multi-point velocity correlations, the LES

correlations (5) can be obtained by applying the filtering

operator to the following two and three-point correlations

(Chang and Moser, 2007):

R(r, s) = 〈u(r)u(s)〉 (6)

B(r, s) = 〈u(r)u(s)u(s)〉 (7)

T(r, s, t) = 〈u(r)u(s)u(t)〉 (8)

Thus, models for these correlation tensors are needed. When

the small scales are isotropic, Kolmogorov inertial range the-

ory applies, and this will be sufficient to determine all but

T, and an extended inertial-range model to determine T has

also been developed. Furthermore, correlations of filtered

velocities with themselves can be computed directly from an

LES. It is therefore possible to determine some of the nec-

essary correlations dynamically in a running LES. In this

case, a model is only needed for the two-point third order

correlations B (Zandonade, 2007).

Correlations in Isotropic Turbulence

The required correlations can be obtained in the case of

simple LES (i.e. isotropic small scales) as is shown below.

Isotropy and the continuity constraints are sufficient to

determine the second- and third-order two-point correlation

tensors from the second and third-order structure functions

respectively. Using the Kolmogorov expressions for these

quantities, the correlation tensors are:

Rij(r) = u2δij +
C2

6
(εr)2/3

“ rirj

r2
− 4δij

”

(9)

Sijk(r) =
ε

15

„

δijrk −
3

2
(δikrj + δjkri)

«

(10)

where the homogeneous two-point correlations are defined:

Rij(r) = 〈ui(x)uj(x + r)〉 (11)

Sijk(r) = 〈ui(x)uj(x)uk(x + r)〉, (12)

and u2 is 2/3 the turbulent kinetic energy, which is also the

velocity variance. The result for the second-order correlation

is well known. The expression for the third-order two-point

correlation shown here was reported by Chang and Moser

(2007), is implicit to the derivation of the Kolmogorov 4/5

law, and is alluded to by Frisch (1995).

A representation for the isotropic three-point third-order

correlation T is not as straight-forward. Proudman and

Reid (1954) determined the most general isotropic tensor

form satisfying all the relevant symmetry and continuity con-

straints, and when transformed to physical space it yields

Tijk(r, s) = P t
imP

s
jnP

r
kp[δnp∂

s
mψ(r, s, t)

+δmp∂
r
nψ(t, r, s) + δmn∂

s
pψ(t, s, r)](13)

where the separation vectors are interrelated t = r − s, and

spatial derivatives are denoted ∂r
i = ∂

∂si

˛

˛

˛

r

, ∂s
i = ∂

∂ri

˛

˛

˛

s

,

∂t
i = − ∂

∂ri

˛

˛

˛

s

− ∂
∂si

˛

˛

˛

r

, the operators Pα
ij = δij∂

α
k ∂

α
k − ∂α

i ∂
α
j

and symmetries require ψ(r, s, t) = −ψ(s, r, t). This form for
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Figure 3: Contours of the DNS data of Langford and Moser

(1999) and tensor model for r and s co-linear (T‖) and

orthogonal (T⊥), in the r–s plane. Each component has

a symmetry, which is used to allow the data and the model

to be displayed side-by-side, as shown. The heavy black lines

are lines of symmetry for each component.

T is a linear combination of seventh derivatives of ψ, where

ψ is a scalar function of scalar separations r, s and t. Fur-

ther, for inertial range separations, the Kolmogorov 4/5 law

implies a linear dependence on separation for the two-point

third order correlation. Assuming that ψ is a polynomial in

r, s and t, consistency with the 4/5 law then requires that

the polynomial have overall order eight. Thus, we may con-

sider ψ of the form (rasb − rbsa)tc, where a + b + c = 8.

If the exponents are non-negative, there is a 20-dimensional

space of possible expressions, in which there is only a 5-

dimensional subspace of T that are non-zero, non-singular,

and continuous. The four unknown constants (not count-

ing the overall magnitude) were determined by fitting to

the DNS data of Langford and Moser (1999). The resulting

model for the three-point third-order correlation is a remark-

ably good representation of the DNS data (see figure 3).

Correlations in Turbulent Channel Flow

When the assumption of small-scale isotropy and homo-

geneity are not valid, the models for the required correla-

tions must be more complex. The most common example

of this situation is near-wall turbulence. In the log-layer

of wall-bounded turbulence, however, self-similarity of the

correlations (Oberlack, 1997) can be used to represent the

inhomogeneity. To model anisotropy, we extend the descrip-

tion of single-point anisotropy in terms of structure tensors

(Kassinos et al., 2001) to the two-point correlation.

Structure tensors are second rank tensors obtained from

single point moments of derivatives of fluctuating stream

functions and are related to integrals of the two point corre-

lation over separations r, and therefore contain information

about the anisotropy of Rij . For homogeneous turbulence,

the independent structure tensors are given by the compo-

nentality (or Reynolds Stress) Bij = εipqεjts

D

ψ′
q,pψ

′
s,t

E

,

dimensionality Yij =
D

ψ′
n,iψ

′
n,j

E

and strophylosis Qijk
1.

While Rij is not uniquely determined by the structure ten-

sors, our modeling approach is to use the theory of invari-

ants (Spencer, 1971) to formulate the most general linear

representation of Rij in terms of the structure tensors,

i.e. ∆Rij(x, r) =
Rij(x,r)−Bij

q2
= Fij (r,b,Q,y), where

q2 = Bkk, bij = Bij/q
2−δij/3, yij = Yij/q

2−δij/3. Under

these assumptions, and with the additional assumption that

the dependence on r is a power law, we obtain (dependence

on x will be implicit in the rest of the section):

∆Rij(r) = rαI [a1δij + a2r̂ir̂j ] (14)

+rαb [a3bij + a4r̂ · b · r̂δij + a5r̂ · b · r̂r̂ir̂j

+a6(r̂i(r̂ · b)j + r̂j(r̂ · b)i)]

+rαy [a7yij + a8r̂ · y · r̂δij + a9r̂ · y · r̂r̂ir̂j

+a10(r̂i(r̂ · y)j + r̂j(r̂ · y)i)]

+rαQ [a11(εimkQklj + εjmkQkli)r̂lr̂m

+a12(r̂jεink + r̂iεjnk)Qklmr̂lr̂mr̂n]

Here r̂ = r/r and αs, s ∈ {I, b, y,Q} are power-law indices.

The number of free constants (a1 −a12) are reduced to 4 by

enforcing the continuity constraint (i.e.
∂∆Rij(r)

∂rj
= 0) and

a self-consistency constraint, which requires that when Q, b

or y are zero, the values of the respective tensors calculated

directly from the representation Fij should be zero. We fit

the representation to DNS data over a space spanned by the

4 free constants, 4 power law indices and 10 free components

of y and Q. The representation captures many features of

the exact correlation, like the inclination of the principle axis

of the isocontours and the shape of the isocontours (figure 4).

While the model captures the anisotropy of the correlations

quite well, there are some obvious differences between the

model and the DNS data. Most notable is the effects of

inhomogeneity, especially on the R12 component.

Given a model for the anisotropy and inhomogeneity of

the two-point second order correlation, an expression for

the two-point third order correlation can be developed from

the two-point correlation equation (assuming the turbulence

is stationary). This along with a dynamic process to esti-

mate the filtered three-point correlations (Zandonade, 2007)

is enough to formulate the optimal LES model.

ESTIMATING TURBULENCE STATISTICS

One of the more subtle difficulties associated with LES

is that formally, the quantities that are being simulated (the

filtered velocities) are of no particular interest. Instead, one

wants to know the statistics of the actual turbulence the

LES is supposed to represent. For this, one must devise a

way to determine the turbulence quantities of interest from

the statistics of the LES solution. Some LES models (e.g.

the stretched-vortex model of Misra and Pullin, 1997; Voelkl

et al., 2000) do this naturally, and this is the case for the

optimal formulation.

Using a model of the small separation multi-point corre-

lations, as discussed above, many turbulence statistics can

be approximated, given the multi-point LES statistics. Any

multi-point correlation of the LES fields can be written as

the filter applied multiple times to the corresponding turbu-

lence correlations. For example, the two-point correlation of

the LES velocities R̃ij(x,x
′) = 〈wi(x)wj(x

′)〉 is written in

1Qijk =
“

Q∗

ijk +Q∗

jki +Q∗

kij +Q∗

kji +Q∗

jik +Q∗

ikj

”

/q2,

where Q∗

ijk = −〈u′

jψ
′

i,k〉
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Figure 4: Isocontours of ∆Rij(y, r) = Rij(y, r) − Rij(y, 0)
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the model with DNS. The contour levels for given a cor-

relation component (i.e. for the same row) have the same

range.

terms of the turbulent two-point correlation as

R̃ij(x,x
′) = Fx

y
Fx

′

y′Rij(y,y
′) (15)

where Fx
y

is the filter operator that acts on the y space

to yield the LES variable associated with the point x. In

particular, in the integral representation of the filter

φ̃(x) = Fx

y
φ(y) =

Z

F (x,y)φ(y) dy (16)

where F is the filter kernel associated with the operator

F . The tensor models described above for the small sep-

aration correlation are expressed in terms of a hand full of

parameters. Such a model for Rij(y,y
′) implies, through

the relationship (15), a parameterization of the LES correla-

tion R̃ij . The LES correlation R̃ij is presumed to be known

as a statistical output of an LES. Parameters can therefore

be fit to the LES statistical data, which then yields a model

for the unfiltered turbulence correlation.

This reconstruction of the turbulence statistics is natu-

ral in the context of the optimal LES formulation because

it makes direct use of models for the small separation cor-

relations. However, regardless of the LES model being

used, the links between filtered and unfiltered statistics are

these small-separation correlations. Indeed the reconstruc-

tion of turbulence statistics that occurs in the context of the

stretched-vortex LES model (Misra and Pullin, 1997; Voelkl

et al., 2000) can be cast as a model for the small separation

correlations.

CONCLUSIONS

Optimization is clearly a viable vehicle for the develop-

ment of LES models for complex turbulent flows. Here, the

optimization is the minimization of the error in representing

the ideal LES given by (2). This so-called optimal LES for-

mulation requires as input knowledge or models of several

small-separation (on order the filter width) multi-point cor-

relations. One might protest that this requirement is much

more burdensome than the inputs required for other mod-

els. However, we saw that the assumptions of small scale

isotropy and the presence of an inertial range is sufficient to

define the required statistics, and these are the assumptions

upon which virtually all LES models are based.

When these assumptions are not valid, then other inputs

are clearly needed. It appears that, as burdensome as they

may be, the correlations upon which optimal LES are based

are what is needed. There are a number of ways that models

for these correlations might be constructed, such as a mech-

anistic model as in the spiral vortex formulation of Misra

and Pullin (1997) and Voelkl et al. (2000). Alternatively,

we are exploring models based on simplified tensor forms.

The vision is that these correlation models can be parame-

terized dynamically based on statistics of the running LES,

to provide the optimal LES subgrid model for the LES. Hav-

ing this model of the correlations also allows the statistics of

the underlying turbulence to be reconstructed from the LES

statistics.
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Härtel, C. and Kleiser, L. 1998 Analysis and modelling

of subgrid-scale motions in near-wall turbulence. J. Fluid

Mech. 356, 327–352.

Kassinos, S., Reynolds, W. and Rogers, M. 2001

One-point turbulence structure tensors. Journal of Fluid

Mechanics 428, 213–248.

Langford, J. 2000 Toward ideal large-eddy simulation. PhD

thesis, University of Illinois at Urbana-Champaign.

Langford, J. and Moser, R. 1999 Optimal LES formula-

tions for isotropic turbulence. Journal of Fluid Mechanics

398, 321–346.

Langford, J. A. and Moser, R. D. 2004 Optimal large-

eddy simulation results for isotropic turbulence. Journal

of Fluid Mechanics 521, 273–294.

Misra, A. and Pullin, D. I. 1997 A vortex-based sub-

grid model for large-eddy simulation. Physics of Fluids

9, 2443–2454.

Moser, R., Kim, J. and Mansour, N. 1999 Direct numeri-

cal simulation of turbulent channel flow up to Reτ = 590.

Physics of Fluids 11 (4), 943–945.

Moser, R. D., Das, A. and Bhattacharya, A. 2007 Filter-

ing the wall as a solution to the wall-modeling problem. In

Complex Effects in Large Eddy Simulations (ed. S. Kassi-

nos, C. Langer, G. Iaccarino and P. Moin), Lecture Notes

in Computational Science and Engineering, vol. 56, pp.

117–126. Springer.

Oberlack, M. 1997 Non-isotropic dissipation in non-

homogenous turbulence. Journal of Fluid Mechanics 350,

351–374.

Pope, S. B. 2000 Turbulent Flows. Cambridge University

Press.

Proudman, I. and Reid, W. H. 1954 On the decay of a

normally distributed and homogeneous turbulent velocity

field. Phil. Trans. R. Soc. Lond. A 247, 163–189.

Spencer, A. 1971 Theory of invariants. In Continuum

Physics (ed. A.C.Eringen), , vol. 1, pp. 239–353.

Voelkl, T., Pullin, D. I. and Chan, D. C. 2000 A

physical-space version of the stretched-vortex subgrid-

stress model for large-eddy simulation. Physics of Fluids

13, 1810–1825.

Volker, S., Venugopal, P. and Moser, R. D. 2002 Opti-

mal large eddy simulation of turbulent channel flow based

on direct numerical simulation statistical data. Physics of

Fluids 14, 3675.

Zandonade, P., Langford, J. and Moser, R. 2004 Finite

volume optimal large-eddy simulation of isotropic turbu-

lence. Physics of Fluids 16, 2255–2271.

Zandonade, P. S. K. 2007 Finite-volume optimal large-

eddy simulation. PhD thesis, University of Illinois at

Urbana-Champaign, Urbana, IL.

416


	TSFP5 Author indexA4.pdf
	Sheet1




