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ABSTRACT

We present numerical simulations of incompressible mag-

netohydrodynamics for the study of the nonlinear evolution

of three-dimensional reconnection instabilities in a config-

uration where a guide field is present and many resonant

surfaces are simultaneously excited in different locations of

the simulation domain. The behavior of the system is differ-

ent from the case when only an antiparallel magnetic field

is present. We observe coalescence of magnetic islands and

the formation of an anisotropic energy spectrum, which is

more developed in the direction perpendicular to the local

equilibrium magnetic field. The characteristics of the tur-

bulence is different from magnetohydrodynamic turbulence

with a uniform average magnetic field.

INTRODUCTION

The nonlinear evolution of reconnection instability in a

current sheet can produce both coalescence of magnetic is-

lands and development of turbulence. In two-dimensional

situations it has been found that a chain of magnetic islands

formed as a result of a tearing instability is subject to coales-

cence driven by the stretching of the most intense X points

(Malara et al., 1992). Dahlburg and Einaudi (2002) studied

three-dimensional instabilities in the case of an antiparallel

equilibrium magnetic field, where only one resonant surface

is present at the center of the current sheet. In this situation,

coalescence is observed, but it is overcome by the growth of

the (0, 1) mode, the longest wavelength in the direction per-

pendicular to the plane where coalescence occurs. The final

state is a 3D turbulent state and very little coalescence is

observed. We show in this paper that when a guide field

is present the nonlinear evolution is characterized by coales-

cence of 2D modes in the center of the current sheet and also

by small scale structures produced by the energy cascade.

The presence of a background magnetic field has strong

effects on the properties of the turbulence, which develops

spectral anisotropy (Shebalin et al., 1983). For MHD turbu-

lence with a uniform background magnetic field a spectral

index γ = −3/2 has been predicted by Iroshnikov (1963) and

Kraichnan (1965). However Goldreich and Sridhar (1997)

taking into account spectral anisotropy, predicted a spectral

index γ = −5/3. On the other hand, in the magnetotail

and magnetopause turbulence, where the average magnetic

field is not uniform, anisotropic energy spectra have been

observed with spectral indexes up to β = 3 (Zimbardo,

2006). Anisotropy has been observed by many spacecraft

in the solar wind turbulence (Horbury et al., 2005) and in

various regions of the Earth’s magnetosphere (Vörös et al.,

2003). Experiments have also suggested the existence of

spectral anisotropy in laboratory plasma devices (Zweben

et al., 1979). Spectral anisotropy is also important for the

transport of particles in turbulent plasmas, both in space

and laboratory systems, since it produces anisotropy in the

transport (Shalchi et al., 2004).

Besides the cases with a uniform average magnetic field,

another context in which turbulence anisotropy is relevant

is magnetic reconnection. In fact, when tearing-unstable

modes grow to significant amplitudes, they couple nonlin-

early producing a cascade to small scales (Malara et al.,

1992, Onofri et al., 2004). Such a phenomenon is intrinsically

anisotropic, since unstable modes, which give origin to the

turbulent cascade, develop at wavevectors k locally perpen-

dicular to the background magnetic field B0. Dahlburg et al.

(2005) showed that, only if the rotation angle of the magnetic

field across the current sheet is larger than 45◦, a secondary

instability of three-dimensional modes develops when the

two-dimensional modes saturate. Here we present a simula-
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Figure 1: Energy of the most unstable modes.

tion of the magnetohydrodynamic (MHD) turbulence that is

generated in this configuration when tearing modes grow and

interact nonlinearly. We analyze the anisotropy properties

of the turbulence generated by the nonlinear development of

reconnection instability in a sheared magnetic field for large

values of the rotation angle (greater than 45◦). During the

nonlinear evolution of the system, the interactions of the un-

stable modes produce the development of anisotropic MHD

turbulence.

THE NUMERICAL MODEL

We solve numerically the incompressible, dissipative,

magnetohydrodynamics (MHD) equations in dimensionless

form:

∂V

∂t
+ (V · ∇)V = −∇

(

P +
B2

2

)

+ (B · ∇)B +
1

Rv

∇
2
V (1)

∂B

∂t
= ∇× (V × B + 1

RM

∇× B) (2)

∇ · V = 0 (3)

∇ · B = 0 (4)

where V and B are the velocity and magnetic field, respec-

tively, P is the pressure and Rv and RM are the kinetic and

magnetic Reynolds numbers. Taking the divergence of Eq.

(1) and using the condition (3) we obtain the equation for

the total pressure:

∇
2p = ∇ · [(B · ∇)B − (V · ∇)V] (5)

where p = P + B2/2 is the total pressure.

We solve such equations in a three-dimensional Cartesian

domain defined by: −Lx ≤ x ≤ Lx, 0 ≤ y ≤ 2πLy , 0 ≤

z ≤ 2πLz . We choose Lx as the unit length scale to non-

dimensionalize the equations. In such a case, the numerical

domain becomes: D = [−1, +1] × [0, 2πly ] × [0, 2πlz ], where

ly = Ly/Lx and lz = Lz/Lx are the aspect ratios in the y

and z directions, respectively.

We choose as unit measure for the magnetic field a typical

value B0, which allows us to define a characteristic value

of the Alfvén velocity vA = B0/
√

4πρ. The quantity ρ is

the mass density, uniform everywhere. Hence, we express

the velocity in terms of vA and the time in terms of the

typical Alfvén time: τA = Lx/vA. Finally, the pressure

P is measured in units of ρv2
A

, while the definition of the

Reynolds numbers, in terms of the kinematic viscosity ν and

of the resistivity η, is: Rv = vALx/ν and RM = vALx/η.

In the x direction we used the following boundary con-

ditions:

Bx|x=±1 = 0 (6)

dBy

dx

∣

∣

∣

x=±1
= 0 (7)

dBz

dx

∣

∣

∣

x=±1
= 0 (8)

V|x=±1 = 0 (9)

dp

dx

∣

∣

∣

x=±1
= 0 (10)

which correspond to rigid conducting walls. Along the y

and z directions we suppose to have periodic boundary con-

ditions.

We set up the initial condition in such a way to have a

plasma that is at rest, in the frame of reference of our com-

putational domain, permeated by a background magnetic

field sheared along the x direction, with a current sheet in

the middle of the simulation domain. Therefore, we set, for

the background quantities:

V0 = 0

B0 = By0ŷ + Bz0(x)ẑ

where By0 is a constant value, which has been set to 0.5,

while Bz0 is given by:

Bz0(x) = tanh

(

x

a

)

−
x/a

cosh2
(

1
a

) (11)

This form for the magnetic field ensures that it is consistent

with the boundary conditions, in particular the first deriva-

tives along x of all the components of the magnetic field

vanish at the boundaries.

The parameter a is a free parameter of our model, and

represents the width of the magnetic field inhomogeneity.

Under these conditions the initial total pressure is computed

by solving numerically Eq. (5). In this configuration, we

have a current sheet with a typical width a in the centre

of the simulation domain. This is an equilibrium field in

the ideal limit (1/RM = 0). We perturb these equilibrium

fields with three-dimensional divergenceless fluctuations of

amplitude ǫ, which satisfy the boundary conditions. The

periodicity in y and z imposes the following conditions on

the wavenumbers:

ky = m/ly

kz = n/lz ,

with m and n integer numbers. We explicitly solve the

equations (1), (2) and (5) using a compact finite-difference

scheme in the inhomogeneous direction (x) and a pseudo-

spectral method in the periodic directions (y and z) (Onofri

et al., 2004).

NUMERICAL RESULTS

A numerical simulation has been carried out with the

following parameters:

Nx = 128, Ny = 32, Nz = 128
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Figure 2: Magnetic field lines of the projected magnetic field B
2D(x, z) = Bx(x, 0, z)x̂ + Bz(x, 0, z)ẑ at different times.

Figure 3: Time evolution of the energy of the modes m = 0,

n = 2 (dashed line), m = 1, n = 1 (dotted-dashed line) and

the total fluctuating energy (solid line).

RM = 5000, Rv = 5000

a = 0.1, ly = 1, lz = 3

The aspect ratios have been chosen taking into account that,

according to the linear theory, the wave vector that cor-

responds to the maximum growth rate is k ≃ 2, so that

Rz = 3 makes the n ≃ 6 modes the most unstable ones.

This gives the possibility to observe energy transfer to both

lower and higher wavenumbers. The width a of the current

sheet has been chosen small enough to reduce stabilizing

effects from the walls. We will show that the time evolu-

tion produces anisotropic spectra in the kykz plane, with an

energy cascade mainly in the kz direction (quasi-2D evolu-

tion). Hence a higher resolution is required in the z direction

(Nz >> Ny). High resolution is also required along x, where

small scales are produced by magnetic reconnection at the

resonant surface locations. The equilibrium has been per-

turbed by exciting Fourier harmonics with −4 < m < 4 and

0 < n < 12, which have resonant surfaces on both sides of

the current sheet. The excited harmonics have wavelengths

both shorter and longer than the most unstable mode, so

nonlinear interactions can transfer energy in both directions.

The x-integrated energy of the m, n Fourier mode is:

Etot
m,n(t) =

∫

|Vm,n(t)|2 + |Bm,n(t)|2

2
dx (12)

and the total fluctuation energy:

Ef (t) =
∑

(m,n) 6=(0,0)

Em,n(t)tot (13)

In Fig. 1 the time evolution of the energy of the most un-

stable modes and of the total fluctuating energy is shown.

At times t > 200 we observe a transfer of energy to smaller

wavenumbers, which leads the (0, 1) mode to become the

most energetic one. This corresponds in the physical space

to a coalescence of magnetic islands along the z direction,

and the growth of the (0, 1) mode can be seen as the forma-

tion of one magnetic island in the xz plane. To represent

these phenomenon we consider the projection of the mag-

netic field onto the y = 0 plane: B
2D(x, z) = Bx(x, 0, z)x̂ +

Bz(x, 0, z)ẑ. In Fig. 2 the magnetic field lines of B
2D are

shown at different times, the plots represent a narrow strip

in the center of the domain. Magnetic reconnection and co-

alescence of magnetic islands are clearly visible.

Another simulation has been performed with a constant

average magnetic field. This avoids the widening of the

current sheet that would be produced by the small Reynolds

numbers that are necessary for the numerical simulation.

This is similar to what happens, on average, in current

sheets that are found in astrophysical plasmas, like in the

magnetotail. The growth of the unstable modes is faster

and a larger spectrum is formed during the nonlinear

evolution, with respect to the case where the equilibrium

field is dissipated. In order to describe the whole spectrum,

including the dissipative range, we have to use a high

spatial resolution. The parameters used for this run are:

Nx = 128, Ny = 512, Nz = 1024

Rv = 1000 RM = 1000

a = 0.1 ly = 1, lz = 1,
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Figure 4: Contour plots of the total energy spectrum log(Etot
m,n) at different times. Time and Etot

m,n are normalized to τA and

ρv2
A

Lx respectively.

Figure 5: Anisotropy angle for kinetic energy (dotted line),

magnetic energy (dashed line) and total energy (solid line).

The angles are measured in degrees and time is normalized

to τA

To save computational time we also choose an aspect ratio

for the simulation domain that does not allow the observa-

tion of coalescence.

In Fig. 3 the time evolution of Etot
m,n is shown for some

of the most unstable modes, together with the total fluctu-

ation energy. After an initial phase (t < 6), in which the

unstable modes are formed, they grow exponentially. The

m = 0, n = 2 mode is the most unstable, as predicted by the

Figure 6: Spectrum of magnetic energy (solid line) and ki-

netic energy (dashed line) and t = 34τA. The straight line

corrsponds to a spectral index β ≃ 4.3. Ek is normalized to

ρv2
aL2

x and k to L−1
x

linear theory (Onofri et al., 2004). At later times (t > 25)

nonlinear effects start to dominate the evolution and give

origin to a transfer of energy among the different modes,

producing an energy cascade to higher wavenumbers. At

the same time we observe a change of slope of the m = 1,

n = 1 mode, which corresponds to the secondary instability

studied by Dahlburg et al.(2005).

Figure 4 shows the contour plots of the energy spec-

trum log(Etot
m,n) at times t ≥ 25, when nonlinear interactions
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among wavevectors dominate the spectrum evolution. The

spectrum is anisotropic and it is developed mainly in the z

direction, which is perpendicular to the equilibrium mag-

netic field in the center of the current sheet, where the

most unstable modes grow. To give a measure of the kykz

anisotropy we define an anisotropy angle:

α = tan−1

√

< k2
z >

< k2
y >

, (14)

where < k2
y > and < k2

z > are defined as:

< k2
z >=

∑

m,n
(n/lz)2Em,n

∑

m,n
Em,n

(15)

< k2
y >=

∑

m,n
(m/ly)2Em,n

∑

m,n
Em,n

(16)

and Em,n can be either the magnetic energy, or the kinetic

energy, or the total energy (Fig 5). An isotropic spectrum

gives α = 45◦. The initial value of the anisotropy angle is

around 42◦, then it increases during the simulation and it

reaches a value of about 77◦ for the magnetic energy and 73◦

for the kinetic energy, indicating that wavevectors in the z

direction prevail. The maximum values are attained before

t = 30. In this phase most of the energy is concentrated in

the modes with ky = 0, which are the most linearly unsta-

ble. After t ≃ 30 the energy cascade becomes more efficient

and the anisotropy angles start to decrease quickly. This can

be seen in the two-dimensional spectrum (Fig. 4) as the ap-

pearance of different lobes at lower angles. The anisotropy

that is observed in MHD turbulence with an average mag-

netic field is due to a larger rate of energy transfer in the

direction perpendicular to the magnetic field, which may be

interpreted in terms of the Alfvén effect.

In Fig. 6 we show the spectral energy density Ek, defined

as:

Ek =
ek

∆k
, (17)

where ek is the energy,integrated over the x coordinate, con-

tained in the shell with wavenumbers between k and k +∆k

and the shells are logarithmically equally spaced. The ki-

netic energy is lower than the magnetic energy and the

spectral index is β ≃ 4.3 for both spectra. This value of

the spectral index is different from the values predicted for

MHD turbulence with a uniform average magnetic field.

CONCLUSIONS

We studied the nonlinear evolution of three-dimensional

instabilities in a configuration where a guide field is present

and 3D perturbations are initially excited. Many resonant

surfaces are simultaneously present in different locations and

nonlinear interactions are also possible between unstable

modes that correspond to different resonant surfaces. En-

ergy transfer to both smaller and larger wavenumbers can

take place due to our choice of the aspect ratios.

The final state of our simulation is a turbulent state,

which is characterized by many spatial scales, with small

structures produced by the direct energy cascade. On the

contrary, the inverse energy transfer generates coalescence of

magnetic islands, producing the growth of two-dimensional

modes.

In another simulation we increased the resolution and

kept constant in time the equilibrium magnetic field, which

is not dissipated. In this case the aspect ratio does not

allows the observation of coalescence, but the higher spa-

tial resolution permits to analyze the anisotropy at small

scales. We follow the development of the energy spectrum

until energy is transported to the dissipative length scale.

The spectral index is β = 4.3, which is different both

from the Kolmogorov spectrum (β = 5/3) and from the

Iroshnikov-Kraichnan spectrum (β = 3/2). The energy den-

sity spectrum is strongly anisotropic, developing mainly in

one specific direction, which can be identified by the defi-

nition of an anisotropy angle. The spectrum grows mainly

in the direction perpendicular to the equilibrium magnetic

field.

The turbulence generated by magnetic reconnection is

quite peculiar and it cannot be described by a standard ho-

mogeneous MHD turbulence, since both the spectral index

and the anisotropy properties are different.
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