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ABSTRACT

We report on hybrid numerical simulations of a turbulent

magnetic dynamo. The simulated setup mimics the Riga dy-

namo experiment characterized by hydrodynamic Reynolds

Re≈3.5×106 and magnetic Reynolds number 15≤Rem≤20,

Gailitis et al. (2000). The simulations were performed by si-

multaneous fully coupled solution of the transient Reynolds-

Averaged Navier-Stokes (T-RANS) equations for the fluid

velocity and turbulence field, and the direct numerical so-

lution of the magnetic induction equations (DNS). This

fully integrated hybrid T-RANS/DNS approach, applied

in the finite-volume numerical framework with a multi-

block-structured non-orthogonal geometry-fitted computa-

tional mesh, reproduced the mechanism of self-generation

of a magnetic field in close accordance with the experimen-

tal records. In addition to the numerical confirmation of

the Riga findings, the numerical simulations provided de-

tailed insights into the temporal and spatial dynamics of

flow, turbulence and electromagnetic fields and their re-

organization due to mutual interactions, revealing the full

four-dimensional picture of a dynamo action in the turbu-

lent regime under realistic working conditions.

INTRODUCTION

A magnetic dynamo is a process of conversion of the me-

chanical energy of a moving electrically conductive medium

into the magnetic energy. It is believed that the magnetic

dynamo effects are responsible for creation and for suste-

nance of magnetic fields in spiral galaxies, stars and planets

(including Earth magnetic field). In addition to these fun-

damental physical phenomena at huge scales, interactions

between fluid flow, turbulence and electromagnetic fields

play the key role in many technological applications. Exam-

ples include: electromagnetic breaking in continuous casting

of steel, semiconductors crystal growth, arc-welding, electro-

magnetic mixing and steering in metallurgical process, liquid

metal blankets of fusion reactors (tokamak), etc.

The experimental studies of magnetic dynamos face

many practical problems and limitations associated with

large dimensions of set-ups and potentially dangerous work-

ing fluids (such as liquid sodium). This explains why, despite

a lot of effort, the first ever experimental proof of a dynamo

action was reported only in late 1999 when the two experi-

mental groups, in Riga (Gailitis et al., 2000, 2001, 2002) and

Karlsruhe (Stieglitz and Müller, 2001, 2002), independently

observed self-excitation and the subsequent sustenance of
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the magnetic field. Despite their undisputed success, these

experimental studies provided only the time records of the

magnetic field components at particular locations - so infor-

mation addressing the detailed time and spatial distribution

of the magnetic field and its dynamics are still missing.

At present, the only way to provide detailed three-

dimensional information on complex physics of time-

dependent fluid flow, turbulence and electromagnetic field

interactions is numerical simulation. Of course, before ex-

ploiting the numerical results to gain a deeper physical

insights into specific phenomena, the computer simulations

must be verified and proven to be numerically accurate and

the mathematical models used to close the equation set to

be based on solid physical foundation.

In this study, we propose a hybrid approach involving si-

multaneous solving of the two-way coupled fluid flow and

electromagnetic interactions. For the fluid flow variables

(velocity, pressure and turbulence) we introduce the tran-

sient Reynolds-Averaged Navier-Stokes (T-RANS) method,

whereas a fully resolving (DNS) approach was used for the

electromagnetic variables. The justification of a such an

approach is motivated by a huge disparity of characteris-

tic length and time scales for velocity and electromagnetic

fields, respectively. For working conditions of the Riga

dynamo setup it can be estimated that the typical mag-

netic diffusive length scale, defined as ηB =
(
λ3/ε

)1/4
,

is much larger than the typical viscous (Kolmogorov) ve-

locity scale, ηu =
(
ν3/ε

)1/4
since the magnetic Prandtl

number estimated from the liquid sodium properties gives

Prm = ν/λ = (ηu/ηB)4/3 ≈ 6.5 × 10−6.

In order to mimic the realistic experimental conditions,

the fully-developed steady RANS solutions were performed

first. In this stage, the magnetic induction equations were

not solved. If the velocity fields and turbulence levels are

properly captured, such calculated fields will represent a

proper basis for possible capturing of the self-generation of

a magnetic field when critical parameters (saturation levels)

are reached. When fully convergent solutions were obtained,

the magnetic induction equations is activated. For each time

step a series of iterations are performed until the conver-

gent fields are finally obtained. In contrast to the previous

segregated numerical simulations, this iterative procedure

involves simultaneous solution of both the momentum and

magnetic induction equations with implicitly updated (the

most recent) fields. This procedure is advanced in time re-

producing the growth of a self-generated magnetic field. The

generated magnetic field creates the Lorentz force, which

feeds back into the momentum equation and, ultimately, the

saturation magnetic regime is achieved.
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EQUATIONS AND SUBSCALE MODEL OF TURBULENCE

The governing fluid momentum and magnetic induc-

tion equations that describe the two-way coupled fluid

flow/electromagnetic interactions can be written as:

∂Ûi

∂t
=

∂

∂xj

[
ν

(
∂Ûi

∂xj

+
∂Ûj

∂xi

)
− ÛiÛj
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The equation set is closed with the divergency free condi-

tions ∂Ûj/∂xj=0, ∂B̂j/∂xj=0 for the velocity and magnetic

fields, respectively. It can be seen that these equations are

directly interconnected through the Lorentz force in the mo-

mentum equation and the convective term in the magnetic

induction equation. Since the fully resolving approach will

be applied for the magnetic induction, the original form of

this equations for the three coordinate directions are dis-

cretised. For the momentum equations, in order to obtain

the evolution equations for the ensemble-mean variables, the

Reynolds decomposition is introduced. All instantaneous

variables are represented as a sum of the ensemble aver-

aged and fluctuating contributions, i.e. Ûi = 〈Ui〉 + u
′

i =

Ui + ui, P̂ = 〈P 〉 + p
′

= P + p, B̂i = 〈Bi〉 + b
′

i
= Bi + bi,

etc. The ensemble-averaged momentum equations can then

be written as:
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where τu
ij

= 〈uiuj〉, τb
ij

= 1/ρµ0〈bibj〉 are the ensemble

averaged second moments of the velocity and magnetic field

fluctuations, respectively. In order to close the system of the

ensemble-averaged equations, additional relations (turbu-

lence closure models) are needed to account for the subscale

turbulence contributions. The most natural way to obtain

these correlations is to derive the full transport equations

for 〈uiuj〉, 〈bibj〉, 〈uibj〉 etc. Such a system of equations

becomes very complex with many terms that should again

be approximated (modeled) involving even higher order cor-

relations (triple moments, correlations involving fluctuating

pressure, derivatives of the fluctuating velocity and magnetic

field, and others). The difficulty is not only in the sheer num-

ber of equations but also in our present inability to model

and to evaluate such correlations since that process requires

simultaneous measurement of the fluctuating velocity and

electromagnetic fields. Such details can only be extracted

from DNS. Unfortunately, at present, such DNS studies of

the induction and the dynamo action at low Prm are still in

rudimentary phase and oriented primarily towards providing

magnetic and kinematic spectra, Ponty et al. (2004), Ponty

et al. (2005), Mininni et al. (2005).

In our previous works we developed RANS models at dif-

ferent levels - including a full-second moment closure (Ken-

jereš et al. (2004) and a simplified eddy-viscosity based

model (Kenjereš and Hanjalić (2000), for turbulent flows

subjected to an external magnetic field. These closures are

Table 1: Specification of the model coefficients.

Cε1 Cε2 CL σk σε Cµ

1.44 1.92 0.025 1. 1.3 0.09

developed for the subscale τu
ij turbulent stresses. In the

second-moment closure, the full transport equations for all

components of the turbulent stress are solved. This enables

the capturing of the mechanism of the fluctuation distribu-

tions among the particular velocity components so that the

effects of turbulence anisotropy can be properly modeled.

The turbulence anisotropy is of crucial importance for ac-

curate predictions for flows in proximity of solid walls and

when subjected to external body forces. For the Riga dy-

namo experimental setup with a strongly turbulent helical

motion in the inner cylinder (high Reynolds number), the

near-wall effects are of the secondary importance. Addition-

ally, since it is our first attempt to perform fully two-way

coupled magnetic dynamo simulations in realistic working

conditions (geometry, flow, turbulence and electromagnetic

parameters), we will proceed with a simplified eddy vis-

cosity model. Now, instead of solving the full set of the

second-moment equations, the transport equations for the

turbulence kinetic energy (〈k〉 = 0.5〈uiui〉) and its dissipa-

tion rate (〈ε〉 = 2ν〈(∂ui/∂xj)
2〉) are solved:
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are turbulent diffusion (Dt
k
,Dt

ε) modeled by a simple gra-

dient diffusion hypothesis, whereas the ’magnetic’ produc-

tion/destruction terms (P b
k
, P b

ε ) are modeled by introduc-

ing the locally determined turbulence parameters and the

time scale of the magnetic damping (Kenjereš and Hanjalić,

2000), respectively. Here B0 =
√

B2
i

is the intensity of the

magnetic field. The kinematic turbulent stresses are then

evaluated as:

τu
ij =

2

3
〈k〉δij − νt

(
∂〈Ui〉

∂xj

+
∂〈Uj〉

∂xi

)
, νt = Cµ

〈k〉2

〈ε〉
(7)

The complete specification of the model coefficients is

given in Table 1. Note that with this model, both the di-

rect (through the momentum equations) and the indirect

(through the MHD terms in the turbulence equations, P b
k
,

P b
ε ), the effects of the Lorentz force onto the fluid flow

and turbulence are introduced. This model was extensively

validated in a series of generic situations including fully

developed turbulent channel flows (Kenjereš et al., 2004;
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Figure 1: Right- sketch of the columnar vortex pattern

of convection inside of Earth according to Busse (2000);

Left- Riga dynamo experimental setup, Gailitis et al.

(2000,2001,2002): 1-propeller, 2-inner cylinder with helical

flow, 3-outer passage with back flow, 4-surrounding ring of

sodium at rest, 5-thermal insulation.

Kenjereš and Hanjalić, 2000), turbulent thermal convection

in enclosures (Kenjereš and Hanjalić, 2004) unsteady elec-

tromagnetically driven recirculating melt flows (Schwarze

and Obermeier, 2004) and control of the crossing-shock tur-

bulent layer in magnetogasdynamic applications (Gaitonde

and Miller, 2005). For all the above mentioned applications,

the fluid flow was subjected entirely or locally to external

magnetic fields of different orientations and strength, i.e.

a wide range of flow regimes (weakly or highly turbulent

flows with or without heat transfer), and intensities of elec-

tromagnetic interactions (weak or strong interactions) are

simulated. This variety of different flow situations and appli-

cations give reasonable confidence in the validity of the above

introduced model for simulating turbulent flows subjected to

the Lorentz force. The remaining magnetic turbulent stress

τb
ij

is negligible for the particular Riga dynamo setup.

SPECIFICATION OF BOUNDARY CONDITIONS

The boundary conditions for all fluid flow and turbulence

parameters along the solid walls are imposed through the set

of wall-functions. This is the only viable alternative for high

Reynolds number flows in complex domains because a full

numerical resolving of boundary layers along the solid walls

at such high Re numbers would require modification of all

equations for the viscous and non-viscous wall effects and the

application of a much finer computational grid, which would

require very large computational effort. We note, however,

that the viscous wall effects play secondary role in the Riga

dynamo setup since the highly turbulent swirling flow pat-

tern inside the inner cylinder determines to a large degree

the flow features in the whole rig. Nevertheless, in order to

properly capture the high gradients of velocity in the near-

wall regions, the numerical mesh is always clustered in these

regions. The numerical mesh is so designed to ensure that

the first near-wall grid point is always located at the nondi-

mensional distance (normalized with the inner-wall scales)

in the range 40≤r+(x+, z+)≤100. Instead of simulating the

flow through the rotating propeller, for which a complex

moving mesh would be needed, we mimic the propeller by

imposing both the axial and tangential velocity projections

in the inner cylinder at the propeller exit plane. These val-

ues are kept constant during the entire simulation. Since

the direct velocity measurements for the realistic working

conditions are not available, we scaled-up velocity compo-

nents measured in the 1:2 scale-down water model of the

Riga dynamo setup, Gailitis et al. (2000,2001).

In contrast to momentum and turbulence parameters

equations, the magnetic induction equation is solved in the

inner and outer cylinders, in the dividing walls and in the

surrounding ring of the sodium at rest. Additional difficulty

appeared in the specification of the non-local boundary con-

ditions for the electromagnetic variables. In the previous

work of Gailitis et al. (2004), where the two-dimensional

finite-difference based kinematic solver was tested for a sim-

plified Riga dynamo setup, the Laplace equation was solved

in the vacuum exterior and matching conditions are imposed

at the outer walls of the surrounding ring of sodium at rest.

Such an approach for three-dimensional geometries reduce

significantly the numerical effectiveness of the solver. This is

the main reason why we followed here a simplified approach

by which we imposed the vertical magnetic field boundary

condition at the outer wall of the surrounding ring of sodium

at rest in accordance with Brandenburg et al. (1995) and

Hamba (2004). This boundary condition allows an escape of

the self-generated magnetic field from the discretised domain

while still keeping reasonable critical dynamo thresholds (a

difference of 20% between the theoretically determined and

numerically estimated critical thresholds in the Riga dynamo

setup, Gailitis et al. (2004).

In this study we performed additional extensive valida-

tion of this boundary condition in the kinematic mode (with-

out back-reaction of the self-generated magnetic field on the

fluid flow) and proved that the critical dynamo threshold is

reached for Rem>15. This value is in good agreement with

the theoretically estimated critical threshold of Rec
m=17.7,

based on studies of the convective instabilities of the Pono-

marenko dynamo, Gailitis et al. (2002,2004). In the work

of Avalos-Zuniga et al. (2003) an assessment of different

electromagnetic boundary conditions on the onset of a mag-

netic dynamo action is performed. Both the Riga dynamo

and the Karlsruhe-dynamo experimental setups were anal-

yses in details. It was concluded that an inclusion of a

stagnant surrounding layer always resulted in reducing the

critical threshold, what appeared to be very convenient from

the practical point of view for the realization of a magnetic

field self-excitation. Obviously, as long as this layer is in-

cluded in the numerical simulations, simplified boundary

conditions for electromagnetic variables (the vertical field

conditions) will be a reasonable first approximation. Fi-

nally, it is concluded that for the first series of fully-coupled

two-way simulations targeting numerical reproduction of the

self-generation of a magnetic field in the Riga dynamo setup,

the vertical magnetic field condition was found sufficient.

THE FINITE-VOLUME DISCRETIZATION OF EQUA-

TIONS

The finite-volume approach, used here for the simulta-

neous solving of fluid flow, turbulence and electromagnetic

fields, is based on the pre-integration of the field equa-

tions over an elementary control volume, thus ensuring the

conservation of all variables over each grid cell. All trans-

port variables are located in the geometrical center of such
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Figure 2: The self-induced magnetic field frequency in func-

tion of the rotation rates in the Riga dynamo setup for kine-

matic (one-way) and saturation (two-way coupled) regimes.

Experimental data from Gailitis et al. (2004).

control volumes (collocated variable arrangement). The

Cartesian vector and tensor components are used for repre-

senting a general non-orthogonal numerical mesh. The grid-

nonorthogonality is included through the local curvilinear

coordinate system (xj) with the Jacobian (J) and βj
m repre-

senting the cofactor of ∂xi/∂xj coordinate transformation,
∂

∂xi
≈ 1

J
∂

∂xj

(
... βj

m

)
. This, together with the fact that the

product J·∆x1·∆x2·∆x3 represents the exact total volume

(∆V ) of the control cell around the central position (P ),

makes that all these coordinate transformation can be eas-

ily represented in the Cartesian coordinate system. In order

to prevent a decoupling between the velocity and pressure

fields (checkerboard pressure oscillations) the Rhie-Chow in-

terpolation is used in the pressure-correction equation. The

corrected velocity and pressure fields are iteratively cal-

culated by the Semi-Implicit Method for Pressure-Linked

Equations (SIMPLE) algorithm. The numerical accuracy of

the entire discretised system is of the second-order. The time

integration is performed by the fully implicit second-order

scheme based on three consecutive time steps. The diffusive

terms are discretised by the second-order central differenc-

ing scheme. The remaining convective terms are calculated

by the monotonicity preserving total variation diminishing

scheme with the UMIST limiter. The linearized system of

equations is then solved using Stone’s strongly implicit pro-

cedure (SIP) based on an incomplete LU-factorization.

RESULTS AND DISCUSSION OF NUMERICAL SIMULA-

TIONS

The results of numerically obtained frequencies of the

axial magnetic field as a function of the propeller rotation

rates, presented in Fig. 2, show good agreement with the

experimental record. In the kinematic regime there is no

back-reaction of the self-generated magnetic field onto the

fluid flow, and an exponential growth or decay of the seed

magnetic field takes place. After this initial growth of the

self-generated magnetic field in the kinematic regime, the

Lorentz force grows and soon becomes strong enough to sig-

nificantly affect the underlying fluid flow and turbulence.

Since an increase in the Lorentz force imposes a stronger

braking of fluid motion, it essentially reduces the source

of self-generation of the magnetic field. Eventually, in the

saturation regime a balance is reached, characterized by a

zero-growth rate of magnetic field intensity.

The radial profiles of the self-generated magnetic field

components are shown in Fig. 3. Here, the symbols represent

the experimentally recorded maximum values at the partic-

ular radial locations for different propeller rotation rates -

ranging from 1900 to 2500 rpm, Gailitis et al. (2006). All

profiles are rescaled with the maximum value along the ra-

dial direction. It can be seen that for both the axial and
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Figure 3: Radial dependency of the non-dimensional mag-

netic field distributions, Above: axial; below: radial compo-

nent. The symbols represent experimental values obtained

at different rotational rates of the propeller, ranging from

1900 to 2500 rpm. The lines represent numerically obtained

values for different time instants.
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Figure 4: Time evolution of the axial magnetic field compo-

nent (By) at the characteristic locations distributed along

vertical lines in the inner cylinder (inner1 and inner2), outer

passage (outer) and surrounding ring of sodium (rest), re-

spectively.
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(TKE=〈k〉=0.5u2
i

in [m2/s2]) at monitoring locations.

radial magnetic field component, experiments show a slight

deviation in profiles symmetry. In contrast, the numerical

results show perfect symmetry indicating full convergence of

the magnetic induction equation. It can be seen that very

good agreement between the experimental and numerical

recordings is achieved for the axial magnetic field compo-

nent, Fig. 3-above. The results for the radial magnetic field

component show a larger scatter, but again, agreement can

be considered as good, Fig. 3-below. In contrast to the zero

axial magnetic field at the outer boundary of the surround-

ing sodium at rest, the radial component correctly shows a

final value. This boundary peak value is slightly underpre-

dicted as compared with measurements, but shows clearly

that the boundary conditions for the vertical magnetic field

is properly imposed. In contrast to the monotonic time evo-

lution of the axial magnetic field profiles, the radial profiles

show an interesting variation in the radial location of the

peak value. The peak value travels from the center of the

outer cylinder for earlier time instants (cycle10-cycle15) and

finally settles at the middle radial distance in the inner cylin-

der, Fig. 3-below.

The entire time-series of the axial magnetic field self-

generation are shown in Fig. 4. Here the monitoring points

are distributed along the vertical lines that are located at

different positions. The evolutions show the highest levels

of amplification in the middle part of the setup (MON13).

In addition to this vertical dependency, a strong radial

variation of the recorded signals is clearly visible with the

strongest amplification in proximity of the wall dividing the

inner from the outer cylinder.

A similar oscillatory behavior is observed for the axial ve-

locity profiles, Fig. 5. Starting from the statistically steady

and convergent solutions, as the self-generated magnetic field

grows, the Lorentz force increases and begins to influence

the underlying fluid flow. In the fully saturated regime (for

time instants > 3 sec) periods with intensive disturbances

are observed. Such oscillatory behavior of the velocity field

Figure 7: Time evolution of the radial magnetic field (Br =

0.015 (red), −0.015 (blue) in [T ]) with streak-lines (gray

tubes): cyle10, cycle12, cycle20, cycle40, respectively.
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illustrates that fully coupled two-way interactions between

the fluid flow and electromagnetic field are simulated. It is

interesting to note the selective response of the turbulent

kinetic energy in the inner and outer cylinder, Fig. 6. While

the turbulent kinetic energy is highly suppressed in the in-

ner cylinder at all locations (Fig. 6-above), it is significantly

enhanced in the outer cylinder (Fig. 6-below).

In contrast to measurements, the numerical simulations

can provide full three-dimensional spatial distributions of

the self-generated magnetic field. In Fig. 7 the isosurfaces

of axial magnetic field of an opposite sign (red and blue)

are shown together with stream-traces of the instantaneous

velocity field (gray tubes). The strongest self-amplification

takes place in the lower part of the setup and then it moves

upwards. This vertical upward shift is also observed in the

experiments and explained in terms of a simultaneous reduc-

tion of both the axial and tangential velocity components in

the lower part of the inner cylinder, as shown in Fig. 7.

Animations reveal a pattern of slowly rotating asymmet-

ric magnetic field, with a frequency of approximately 1 Hz.

This is significantly different from the typical frequency of

the propeller that is approximately 30 Hz.

CONCLUSIONS

The paper reports on two-way-coupled hybrid numeri-

cal simulations of the full-scale Riga dynamo experiment, in

which the experimental configuration, fluid properties and

externally imposed parameters have all been closely repli-

cated, reproducing thus realistic working conditions with

Re=3.5 × 106, Rem=18. The simulations are performed

by solving the time-dependent (”transient”) transport equa-

tions for the ensemble averaged fluid flow and turbulence

variables (T-RANS) simultaneously with the direct numer-

ical solutions of the magnetic induction equations (DNS).

The T-RANS equations have been closed using an earlier

developed eddy-viscosity model for the subscale turbulence

contributions in which the effects of the fluctuating Lorentz

force have been included. The fluid-flow and electromag-

netic equations are solved using a fully integrated finite-

volume Navier-Stokes/Maxwell solver for three-dimensional

non-orthogonal geometries.

The fully coupled (two-way) simulations reproduced

closely the experimentally recorded self-excitation and the

subsequent saturated self-sustenance of the generated mag-

netic field. Detailed comparisons revealed that the simulated

features of the self-excitation and sustenance, including fre-

quencies, amplitudes and spatial distributions of magnetic

fields are all in good agreement with the available exper-

imental data. In addition to the numerical verification of

the experimental main findings - the histogram of the mag-

netic field self-excitation, saturation and self-sustenance, the

simulations provided data on full time and space dynam-

ics of the fluid velocity, turbulence statistics and magnetic

field, from which practically any information and deductions

could be extracted - of course within the framework of the

ensemble-averaged time dynamics.
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