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ABSTRACT

Direct Numerical Simulation (DNS) is used to evolve

two initially laminar vortex rings, of differing core thickness,

through transition to the turbulent regime. We investigate

the vortical structure which defines the respective phases

and give an account of the turbulent breakdown process.

The structure of the resultant turbulent ring is found to be

different for the thin- and thick-core rings. The thin-core

ring maintains a coherent core structure whereas the thick-

core becomes a swirling mass of vorticity filaments. Using

the vorticity field as an initialisation, we investigate the sur-

face interaction of vortex rings in a laminar, transitional and

turbulent state. We find characteristic surface deformations

and vorticity reconnections specific to the condition of the

ring.

INTRODUCTION

Vortex rings are interesting for a number of reasons,

ranging from their ubiquitous nature to the fact that their

growth, instability, and breakdown represent a prototypical

turbulent flow. We focus here upon the structural develop-

ment of a single ring during this breakdown process and its

effect on a free surface.

The laminar vortex ring, typified by a toroidal core of

vorticity, is unstable to azimuthal disturbances whose ampli-

fication distorts the core into a stationary azimuthal wave of

wavenumber m (Krutzsch, 1939). Maxworthy (1972, 1977),

and Widnall & Sullivan (1973) showed experimentally that

the wave grows in the conical surface at 45◦ to the axis of

ring propagation. The rigorous mathematical treatment of

Widnall & Tsai (1977) deduced an inviscid growth rate for

the instability, to which a viscous correction was added by

the DNS of Shariff et al. (1994). The vortex ring instability

is an example of the elliptical instability, a review of which

is given by Kerswell (2002).

The instability initially grows linearly, followed by a short

transitional period featuring nonlinear wave growth, culmi-

nating in a turbulent vortex ring. The model decompositions

from the numerical simulations of Shariff et al. (1994) and

experiments of Dazin et al. (2006) show that the nonlin-

ear phase is heralded by exponential growth of higher-order

harmonics of the most unstable linear modes, followed by

rapid growth of an m = 0 mode corresponding to a mean

azimuthal velocity (also seen in the experiments of Naitoh

et al. (2002)). Dazin et al. also reported the development

of vortical structures on the (outer) periphery and interior

of the ring, leading to ejection of vorticity into the wake.

They inferred that the vortical structures were progressively

wrapped around the core;. This is consistent with the vor-

ticity tubes observed in the experiments of Schneider (1980)

during the latter stages of transition. Recently Bergdorf

et al. (2007) analysed the vortical structures numerically and

suggested that they originate from locally stretched regions

of the deformed vortex core.

The experiments of Wiegand & Gharib (1994) tracked

vortex rings at an initial Reynolds number of 7500 (based

on ring circulation Γ) through the laminar into the turbu-

lent regime via the naturally occurring azimuthal instability.

Their results for the turbulent phase of the ring evolution

show that the ring maintains a definite coherent core struc-

ture with smaller scale vorticity regions in the periphery of

the cores. A turbulent wake is generated behind the ring

which consists of hairpin vortices, which are the remainder

of the secondary vortical structure (Bergdorf et al., 2007).

The loss of organised structure leads to a ‘staircase-like’ de-

cay in time of circulation and velocity, with the velocity

lagging the circulation by a small amount. Glezer & Coles

(1990) also noted the peripheral vortex structures, suggest-

ing that their presence influences the local entrainment and

detrainment dynamics. Weigand and Gharib found that the

turbulent ring relaminarised when the loss of ring circulation

decreased the Reynolds number below 2300.

We intend to determine the effect of the characteristic

ring structure on the normal interaction of a vortex ring

with a free surface. Song et al. (1992) investigated experi-

mentally the normal interaction of laminar rings with a clean

(surficants removed) surface. It was found that the approach

of the ring is marked by an increase in diameter due to the

influence of the virtual mirror image above the surface. This

radial expansion is coupled with constriction of the core to

preserve the continuity of vorticity lines. As the core prop-

agates radially below the surface, the dynamics of the core

and the local strain field are dominated by the image vor-

tex above the surface. The ring locally approximates a pair

of line vortices and the core is susceptible to the Crow in-

stability (Crow, 1970), a long-wave example of the elliptical

instability. This causes a wavy core structure to develop in

the same 45◦ plane as the short-wave laminar instability.

As the core waves grow in amplitude the core disconnects

and reconnects with the free surface in a series of U-shaped

hoops. Quyuan & Chu (1997) performed an inviscid simula-

tion of the normal ring interaction with a deformable surface.

They found that inviscid behaviour of the ring followed that

of Song et al. but the vortex ring did not reconnect with the

surface. This is not unexpected as surface reconnection is a

viscous phenomenon (Ashurst & Meiron, 1987).

This paper is in two parts. In the first part, we present re-

sults from DNS of the unbounded vortex ring, concentrating

on the evolution of the ring structure through the laminar,

transitional and turbulent phases. In the second part, we

perform a DNS of the normal interaction between vortex

rings, at different stages of evolution, and a deformable free

surface.
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NUMERICAL APPROACH

The numerical approach splits naturally into two steps:

the precursor simulation of a vortex ring in an effectively

unbounded domain, and the subsequent interaction of the

developed ring with the free surface including the free surface

dynamics. Each step is simulated with a different numerical

code as described below.

Unbounded Vortex Ring

The incompressible Navier-Stokes equations are dis-

cretized on a staggered cartesian grid using second-order

finite differences in space with Adams-Bashforth stepping

in time. Continuity is imposed using a standard pressure

correction method and the resulting Poission equation for

the pressure field is solved using a multigrid technique; see,

for further details, Yao et al. (2001). The initial simula-

tions showed that a significant wake is produced by the

vortex ring during both the laminar and turbulent phases

of its development, and so to avoid any interference from

the wake we employ inflow and outflow boundary conditions

in the direction the ring is traveling, i.e. along the z-axis,

rather than the periodic conditions used in the other direc-

tions. Additionally, we keep the ring in the centre of the

computational domain by performing the calculations in an

(unsteady) moving reference frame attached to the ring, and

adding a tracking system and controller to enforce this. It

thus provides the propagation velocity of the vortex velocity

W1(t) in a natural way and also defines inflow boundary con-

dition at z = +Lz/2. The remaining velocity components

satisfy the Neumann conditions ∂u/∂z = ∂v/∂z = 0 which

are equivalent to enforcing a vanishing inlet vorticity. At the

outflow plane z = −Lz/2 all three components satisfy a lin-

ear gradient condition, with ∂u/∂z = ∂v/∂z = ∂w/∂z = 0.

The vortex ring is initialised as a Gaussian distribution

of vorticity arranged around a ring centreline that is per-

turbed slightly from being perfectly circular, so that written

in terms of the distance from the local position of the cen-

treline R′(θ) we have

ωθ =
Γ

πδ2
e−s2/δ2

(1)

where s(θ)2 = z2 + (r − R′(θ))2. We suppose that the local

radius R′(θ) can be written to include a small parameter

ς = 0.0002 multiplied by the sum of a set of N Fourier

modes, each with unit amplitude and random phase, so that

R′(θ) = R0 [1 + ςf(θ)]

f(θ) =

N
X

n=1

An sin(nθ) + Bn sin(nθ),

where A2
n + B2

n = 1. Although this method leads natu-

rally to a divergence-free velocity field, the continuity of the

vortex lines themselves is not guaranteed – partly because

the vorticity should be tilted slightly to follow the tangent to

the path of the vortex centreline, and partly because the im-

plied cross-section area of the vortex is not perfectly constant

around the ring. The above vorticity field can be corrected

to become divergence-free by superimposing the gradient of

a scalar field ∇φ and requiring that φ satisfy a Poisson equa-

tion whose source term is the divergence error of the original

vorticity field. The complete initial field is then obtained by

solving for the vector stream function that is consistent with

the vorticity distribution, and the velocity field then follows

directly by taking its curl.

Table 1: Part I run parameters

Case δ0/R0 Γ0/ν Lx×Ly×Lz Nx×Ny×Nz

A 0.413 5500 8R0x8R0x8R0 256×256×256

B 0.200 7500 8R0x8R0x8R0 512×512×512

We present results for a thick- (case A) and a thin-core

(case B) vortex ring of initial radius R0, initial core radius

δ0 at a Reynolds number as defined by the initial ring cir-

culation Γ0 over kinematic viscosity ν. The run parameters

are documented in table 1, where L is the domain length

and N is the number of grid cells.

Free Surface Interaction

The free surface simulations use a similar second-order

finite-difference discretisation but additionally allow for the

surface to deform. One difference is that the pressure solver

is replaced by a red-black successive over-relaxation (RB-

SOR) method that incorporates the free surface boundary

condition. The additional complexity of having a moving

boundary that cuts through the cartesian grid is addressed

using a split-merge technique. This is equivalent to the vol-

ume of fluid method, which accounts for the free surface

geometry in a conservative manner, see Thomas et al. (1995)

for details. The approach requires that the surface slope is

less than the aspect ratio of the cell.

The domain dimensions and grid resolution are initially

the same as used in case A allowing us to either directly

embed the vorticity field from the precursor simulation as

the initial condition, or use the vorticity distribution from

equation 1. The velocity field is subsequently derived from

the vector potential associated with the vorticity field.

Due to the increasing ring diameter as it approaches and

propagates near to the free surface, it becomes necessary to

expand the domain horizontally. This is accompanied by

a reduction in the vertical box length Lz to approximately

maintain the number of grid points. The velocity field is

reconstructed by employing the above vorticity embedding

method in the expanded domain. The expansion procedure

is performed when the ring approaches within 2.5R0 of the

edge of the domain.

Radial expansion is also accompanied by a thinning

of the core requiring additional grid resolution. This is

achieved by Fourier interpolation in the horizontal directions

and a third order cubic spline in the vertical direction. The

regriding is used to maintain a resolution corresponding to

18 grid cells spanning the core diameter.

The presence of the free surface introduces a Froude

number Fr = Γ0/
q

gR3
0
, where g is the acceleration due

to gravity, which determines the magnitude of surface defor-

mation. The choice of Froude numbers is restricted by the

surface slope limit.

RESULTS

UNBOUNDED VORTEX RING

During the laminar phase the initially toroidal ring is de-

formed through the development of the azimuthal instability.

The instability excites a narrow band of azimuthal waves

with the dominant wave number bm at breakdown equal to

6 and 9 for cases A and B respectively, which agrees with
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Figure 1: Visualisation of the secondary structure at time

tΓ0/R2
0 = 84.6. (a) Contours of ωz on the horizontal plane

through the centre of ring (z = 0) for Case B: , ωz > 0;

, ωz < 0. Contour increments |ωz max| /10. (b) Isosur-

face of the second invariant II of the velocity gradient tensor,

IIR4
0/Γ2 = −0.005, viewed from above.
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Figure 2: The generation of hairpin vortices. Isosurface of

the second invariant of the velocity gradient tensor, IIR4
0/Γ2 =

−0.005 for case B at time tΓ0/R2
0 = 100.8.

the theoretical predictions for a core with a Gaussian profile

given by Shariff et al. (1994).

To aid understanding of the breakdown process we make

a distinction between the region of intense vorticity at

the core centre, which we call the ”inner core”, and the

surrounding outer-core region of lower vorticity, which we

call ”halo” vorticity. (See the recent numerical study by

Bergdorf et al. (2007) for a slightly different perspective on

this topic.) The azimuthal instability causes displacement

of both the inner vorticity (into a stationary wave pattern)

and the halo vorticity. Where the inner core is displaced out-

wards the halo vorticity is displaced inwards and vice versa

- consistent with the second radial mode (Widnall, 1975).

The corresponding radial ωR and axial ωz vorticity compo-

nents on a horizontal slice through the core have a three

layer arrangement as shown in figure 1(a). The central layer

corresponds to the inner core and the inner and outer lay-

ers to the halo vorticity. During the transitional phase the

halo vorticity forms pairs of neighbouring loops of alternat-

ing signed vorticity, predominately of ωR and ωz . These are

products of tilting and stretching of the halo vorticity. The

loops are disconnected from one another but touch at a sad-

dle points in a radial plane aligned with the maximum inner

core displacement but offset radially inward or outward in

opposition to the inner core displacement. Two loops wrap

around each azimuthal wave hence there are the same num-

ber of pairs of loops as waves around the azimuth of the core.

The structure is visualised with an isosurface of the second

invariant of the velocity gradient tensor in figure 1(b). An

azimuthal decomposition of the modal behaviour shows a

dominant m = 1 mode during the transitional phase, con-

sistent with Dazin et al. (2006) and Shariff et al. (1994).

This intermodulation product results in regions of preferen-

tial azimuthal wave growth, shown in figure 1.

As the azimuthal instability intensifies, the inner core

and outer secondary structures are stretched, resulting in a

peak in the total ring enstrophy. The stretched loops begin

to protrude locally outside the entrainment bubble. They

then become convected by the free stream flow and begin

to trail behind the vortex ring. The loops originally devel-

oped as counter rotating pairs side by side, but as they trail

outside of the ring the loops detach and reattach with their

neighbour at the saddle point to form hairpin vortices that

fill the wake (Figure 2). The localised equilibrium between

the inner core and the outer halo vorticity is broken, as the

halo vorticity leaves the entrainment bubble and the core

becomes locally turbulent at the position of the initial hair-

pin vortex shedding. The azimuthal instability wave was not

found to rotate prior to the ring becoming turbulent, which

conflicts with the interpretation of Maxworthy (1977). The

waves continue to develop across the remainder of the ring,

unhindered until the secondary structure is shed into hairpin

vortices around the entire azimuth of the ring, and the ring

can be considered to be fully turbulent.

The stationary coherent vortical structure which mark

the transitional phase is superseded by the swirling of vor-

ticity filaments around an instantaneous origin. Figure 3(a)

shows that the core region of case A breaks down into a

number of interwoven vortex filaments. No well-defined co-

herent core persists and circulation is shed via a continual

stream of vortex filaments into the wake. The thin-core ring

(case B) however maintains a core region of concentrated

vorticity (the dark region in Figure 3(b)) which is consis-

tent with the turbulent visualisations of Wiegand & Gharib

(1994). The core region is no longer stationary, but bends

and twists with time. Vorticity filaments, similar to the sec-

ondary structure, are continually generated, wrapping and

circulating around the turbulent core. Figure 3(b) shows a

number of these vorticity filaments wrapped round the core

region with long tails that trail into the wake and out of

the domain, in agreement with Bergdorf et al. (2007). Just

as for the thick-core ring, these vorticity filaments circulate

around the core and gradually pass out of the vortex and

into the wake as a stream of vorticity filaments and hairpin

vortices, as visualised by Glezer & Coles (1990) and Wiegand

& Gharib (1994). The ring was not simulated further into

the turbulent regime. However an initial staircase-like decay

of circulation, as reported by Wiegand & Gharib (1994) and

Bergdorf et al. (2007), was noted.
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Figure 3: Double isosurface of vorticity magnitude |ω| for

turbulent vortex rings. (a) Case A at time tΓ0/R2
0 = 220:

dark surface level |ω|R2
0/Γ0= 1.4; translucent light surface

level |ω|R2
0/Γ0= 0.7. (b) Case B at time tΓ0/R2

0 = 136.8:

dark surface level |ω|R2
0/Γ0= 2.5; translucent light surface level

|ω|R2
0/Γ0= 1.25.

FREE SURFACE INTERACTION

The following results should be viewed as preliminary

with current simulations employing a larger number of grid

cells to improve the resolution of the vortex structure under-

way at the time of writing. These will be presented during

the symposium.

Laminar Ring

The free surface code was validated by comparing the

simulation of a laminar ring propagating normally (90◦) to-

ward a free surface with the experimental results of Song

et al. (1992). A laminar ring was initialised at depth 4R0,

with δ0/R0 = 0.2, R = 1.0, Re = 10000 and Fr = 0.252,

which matches the parameters of their first test case, al-

beit with a slightly lower Reynolds (Song et al. used Re =

15100). The effect of lowering the Reynolds number for a

laminar ring is to decrease the growth rate of the azimuthal
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Figure 4: Comparison of vortex ring depth and radial expansion

between DNS and experiments (∗∗∗) Song et al. (1992).

instability and increase core diffusion, but since the time-

scale for the surface interaction is relatively small neither is

effected greatly. The evolution of the radial expansion and

depth of the ring show excellent agreement with the experi-

ments (figure 4). The approach of the ring induces a circular

bulge on the surface above the ring, which grows as the ring

draws closer. At a depth of about one initial radius R0 the

ring begins to expand, causing the surface bulge to fall and

a circular surface depression to propagate outboard of the

expanding ring, which is consistent with the observations of

Song et al. (1992). After the last experimental reading doc-

umented in figure 4, the vortex ring continues to propagate

under the surface for a further radial expansion of 1.5R0,

at which point the ring disconnects and reconnects with the

surface. The radial expansion was not recorded by Song et

al. as far as the surface reconnection, as the errors in the

employed video recording method became too large.

Transitional Ring

The vorticity field for the thick-core ring (case A) was ex-

tracted and embedded 4R0 below the free surface, with the

Froude number for the simulation set to 0.252. At the time

of embedding, the ring had evolved for 130R2
0
/Γ0 time units

and was in the transitional phase documented above, with

a clearly defined wavy inner core distortion and associated

secondary peripheral structure. As the ring approaches from

4R0 to 1R0 of the free surface the wavy core and secondary

structure continue to develop and stretch, however a fully

turbulent state is not reached. During this time the sur-

face above the ring is again deformed into a bulge, however

whereas the laminar surface bulge was circular, the transi-

tional surface bulge was modulated by the stationary core

wave pattern of the ring. As it moves to within a depth

of 1R0, the presence of the surface begins to stabilise the

ring. The growth of the inner core wave and associated

secondary structure is suppressed. The shedding of the sec-

ondary structure was found to be a trigger for turbulence,

however this does not occur and the ring remains in a tran-

sitional state. As for the laminar case, the radial expansion

and subsequent propagation at a small depth induces an out-

board depression on the surface. The depression is no longer

circular but matches the wavy inner core pattern in shape,

as shown by the dark region in figure 5(a).

At time tΓ0/R2
0

= 29.6 the ring is at depth order δ0, with
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Figure 5: Transitional ring interaction with a free surface

at time tΓ0/R2
0 = 40.0: (a) Surface distortion: light shad-

ing corresponds to elevation; dark to depression. (b) Vorticity

structure below the surface visualised by isosurfaces of II, level

IIR4
0/Γ2 = −0.005. (c) Surface normal vorticity ωs at the free

surface, contour increments 0.2 × ωmax
S .

radius 1.5R0. The secondary loops of halo vorticity begin

to come in contact with the surface. The loops disconnect

and reattach to the surface just outboard of the inner core.

This forms U-shaped vorticity tubes which encircle the in-

ner core. As the inner core expands radially, it displaces

the U-shaped tube with it. Two examples of the outboard

attachment points of two separate U-tubes are highlighted

by the solid circles in figure 5(b). The corresponding regions

of surface normal vorticity ωs at the free surface are shown

with solid line circles in figure 5(c). The vortical structures

inboard of the inner core in figure 5(c) are remnants of the

secondary loops that remain disconnected to the ring at the

surface. The secondary structure develops as neighbouring

loops of counter-rotating vorticity, hence the correspond-

ing neighbouring regions of ωs are of opposing sign. This

type of surface reconnection is different to that described by

Song et al. (1992), who considered the laminar surface re-

connection of the inner core region. The laminar rings they

investigated had not aged enough to develop the secondary

structure, hence a sinusoidal wave that develops on the in-

ner core region due to a Crow-type instability (Crow, 1970)

which causes it to reconnect with the free surface.

At time tΓ0/R2
0

= 36.0 the inner core begins to interact

with surface. The inner core is distorted into a station-

ary wave at 45◦ to the vertical, hence isolated wave crests

become in close contact to the the surface. The inner core

begins to disconnect and reconnect to the surface at these lo-

cations, as indicated by the dashed circles in figure 5(b). The

resultant ωs generated by the reconnection to the surface

is indicated in figure 5(c) by corresponding dashed circles.

The two neighbouring vorticity contours are of opposite sign,

consistent with the connection of two separate filaments.

The final stages of the interaction are currently under

investigation to determine if the inner core detaches around

the entire azimuth to form a series of U-shaped hoops, as do

the laminar rings of Song et al. (1992).

Turbulent Ring

A thick-core ring was extracted from case A and embed-

ded 4R0 below the surface, with the Froude number for the

simulation set to 0.252. At the time of embedding, the ring

had evolved for 159.3R2
0
/Γ0 time units which is 10R2

0
/Γ0

before the onset of turbulence. As the ring travels toward

the surface it becomes turbulent, shedding the secondary

loops as a string of hairpin vortices which trail behind the

turbulent core as shown in figure 6. The approach of the

turbulent ring to the surface induces a bulge on the surface,

but with no clear pattern, in contrast to the transitional and

laminar cases. The structure of the core was shown above

to be a swirling mass of intertwined vorticity filaments. As

turbulent ring moves closer to the surface the swirling vor-

ticity filaments come in close contact to the surface inboard

of the vortex core. As they rotate around the core under-

neath the surface, the filaments connect to the surface and

remain connected in the outer periphery of the turbulent

ring as it expands radially. As the ring expands, more and

more filaments reconnect with the surface.

SUMMARY

Using DNS we have examined the three different stages

of unbounded vortex ring evolution, laminar, transitional

and turbulent, and the corresponding vortical structures.

Laminar rings consist of a toroidal core region and are sus-

ceptible to the azimuthal instability. Transitional rings have
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Figure 6: Turbulent ring surface interaction featuring a translu-

cent free surface at time t = 31.2Γ0/R2
0. Vorticity structure

below the surface is visualised by isosurfaces of II, with level II

= -0.005. The free surface distortion pattern is shown in the

insert with light shading corresponding to regions of elevation

and dark to depression.

a wavy inner core region which is encompassed by a mesh

of loops of halo vorticity. Neighbouring loops are of oppos-

ing sign vorticity and their shedding from the ring heralds

the onset of turbulence. The structure of the turbulent ring

depends on the relative core thickness with thin rings main-

taining a coherent core region and thick-core rings typified

by a swirling mass of vorticity filaments. We have also stud-

ied how each of the structures interact with a deformable

surface, and their characteristic surface deformation and re-

connection patterns. Future work will investigate how the

rings affect and are affected by a free surface containing pre-

existing plane gravity waves
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