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ABSTRACT

The assessment of the vortex method for its application

to turbulent flow simulation is performed through computa-

tion of homogeneous isotropic turbulence. In particular, the

energy transfer across various scales of turbulence and the

representation of the viscous dissipation are examined. The

core spreading method and particle strength exchange were

selected as the viscous diffusion scheme to be tested. The

computations were accelerated by the use of a fast multipole

method modified for periodic boundary conditions. Results

show that both diffusion schemes are able to reproduce es-

sential dynamics of turbulence including the decay of kinetic

energy, though the spatial adaption is necessary even if the

number of vortex elements is sufficiently large.

INTRODUCTION

The simulation of turbulence requires the accurate pre-

diction of the production, transport, and dissipation of ki-

netic energy. In vortex methods, this is made possible by

properly calculating the stretching term and diffusion term

of the vorticity equation. The mesh-free nature of the pure

Lagrangian vortex methods is itself a large advantage, but it

is also the primary source of the viscous diffusion problem.

A straightforward application of the commonly used dif-

fusion schemes in vortex methods to turbulent flows cause

problems due to its Lagrangian nature. For example, hetero-

geneous distribution of vortex elements, which is inevitable

in the course of calculation, is known to contaminate the

accuracy of the diffusion. Furthermore, remeshing, adding,

splitting, or merging the vortex elements to solve this prob-

lem either undermines the mesh-free nature or adds some

ambiguity to the originally rigorous method. The modifica-

tion of the existing treatments is necessary while retaining

the advantage of the vortex method.

The following two methods are of primary interest in

our study: The particle strength exchange (PSE) (Winckel-

mans, 2004) and the core spreading method (CSM) (Barba

et al., 2005). The former permits the use of higher order

kernels, does not require viscous splitting, and is a straight-

forward solution to the governing integral equation. It has

also been successfully implemented in many applications.

On the other hand, the latter has the potential of becoming

a pure Lagrangian scheme. Unlike other viscous diffusion

methods, the CSM does not require the use of any kind of

mesh.

Both methods have been tested for a number of com-

plex bluff body flows (Winckelmans, 2004), though only a

few conduct a thorough investigation in canonical turbulent

flows. The Lamb-Oseen vortex often serves as a standard

benchmark for the viscous diffusion schemes, but this flow

is too simple to represent the complex dynamics of vortices

that occur in actual turbulent flows. A systematic assess-

ment of these methods is desired.

The present study focuses on the performance of the

vortex methods in simulating homogeneous isotropic tur-

bulence. This problem is particularly suitable to test the

ability of the method to reproduce fundamental features of

turbulence due to the absence of mean shear, strain, rota-

tion, or wall effects. It still involves, however, the energy

cascade process from large to small scales, which is the key

mechanism in the dynamics of turbulence. The suitability

of the viscous diffusion schemes can also be examined by

investigating the rate of energy dissipation.

There are only few preceding studies on the computation

of homogeneous isotropic turbulence by the vortex meth-

ods. Cottet et al. (2002) used the vortex-in-cell method

and compared with a spectral method for N = 1283 grid

points. The evolution of the energy spectrum, kinetic en-

ergy, dissipation, enstrophy and skewness were in excellent

agreement. However, their method requires the use of a grid

for the stretching, diffusion and velocity calculations.

Totsuka & Obi (2007) studied the performance of the

core spreading method and a Laplacian model used in

moving particle semi-implicit methods by computing two-

dimensional homogeneous isotropic turbulence. The rate of

energy decay could be reasonably well reproduced when spe-

cial treatment was introduced. However, the effect of the

stretching term which is another key of the vortex method

calculation was left unexplored.

As a whole, the information on the ability of the vor-

tex methods in the fundamental turbulent flow problems is

limited. A possible reason is the comparative inefficiency

of the vortex methods for the calculation of homogeneous

turbulence. The calculation cost becomes high compared

to spectral methods because vortex methods do not bene-

fit from periodic boundary conditions, whereas the spectral

methods enormously do.

365



10
0

10
1

10
−1

10
0

t/T

K

SGM

PSE

CSM

(a) Reλ = 25, N = 643

10
0

10
1

t/T

SGM

PSE

CSM

(b) Reλ = 25, N = 1283

10
0

10
1

10
0

10
1

t/T

K

SGM

PSE

CSM

(c) Reλ = 50, N = 643

10
0

10
1

t/T

SGM

PSE

CSM

(d) Reλ = 50, N = 1283

Figure 1: Decay of Turbulent Kinetic Energy.

In the present study, an acceleration technique for the

Biot-Savart calculation in a periodic domain is developed

and validated. With the help of this acceleration technique,

cost effective calculation of the vortex method in three-

dimensional homogeneous turbulence has become possible.

The computations are made using a pure Lagrangian

vortex method and compared with a spectral method cal-

culation. The number of elements used for both methods

are set equal to each other in order to provide more or less

the same spatial resolution and also to facilitate the assess-

ment on the cost efficiency.

NUMERICAL METHOD

Periodic Fast Multipole Method

In the present study the fast multipole method (FMM)

by Cheng et al. (1999) is modified to include the effect of

periodic boundary conditions. Previous attempts to use the

FMM in a periodic domain have a 3k × 3k × 3k structure

(Lambert et al., 1996), where k is the number of periodic

image cells per dimension. The present method forms a

2k × 2k × 2k structure, by grouping the cells in a different

manner.

Spectral Method

The spectral Galerkin method with primitive variable

formulation (Rogallo, 1981) is used in the present study.

A pseudo-spectral method was used to compute the con-

volution sums, and the aliasing error was removed by the

3/2-rule. The time integration was performed using the

fourth-order Runge-Kutta method for all terms.

Initial Condition

The initial condition was generated in Fourier space as

a solenoidal isotropic velocity field with random phases and

a prescribed energy spectrum, and transformed to physical

space (Rogallo, 1981). The spectral method calculation used

this initial condition directly. The strength of the vortex el-

ements was calculated from the vorticity field on the grid by

solving a system of equations (Barba, 2005). The core ra-
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Figure 2: Kinetic Energy Spectra at t/T = 2.

dius of the vortex elements were set to 2π/N and the overlap

ratio was 1.

Computational Details

Calculations were performed for Reλ = 25 and 50. The

Reynolds number was changed by adjusting the strength of

the prescribed energy spectrum, and the viscosity remains

constant. The number of elements was N = 643 and 1283.

The time increment was ∆t = 0.005 and 0.0025 for the cal-

culations of Reλ = 25 and 50, respectively. This corresponds

to a quarter of the Kolmogorov time scale.

RESULTS AND DISCUSSION

Energy Decay

First, the decay of kinetic energy is examined in order to

quantify the global feature of the vortex methods. N and

Reλ are changed independently to observe the relation be-

tween the spatial resolution and Reynolds number. The four

different cases are shown in Figure. 1. SGM, PSE, and CSM

stand for the spectral Galerkin method, particle strength

exchange and core spreading method. The time t is normal-

ized by T , with T being the eddy turnover time defined as

T = L/u′, where L is the integral scale and u′ is the velocity

fluctuation.

The results of SGM indicate that the rate of decay in

total kinetic energy is relatively small at the beginning and

increases afterwards. The change of the decay rate occurs

slightly later for the larger Reλ.

The PSE fails to capture the decay of the kinetic energy

at later time steps. On the other hand, the CSM calculation

diverges at t/T ≥ 3 for all four conditions. It is under-

stood that the condition shown in (c) represents the most

low spatial resolution against Reλ. On the other hand, the

comparison between (a) and (b) shows that the increase of

spatial resolution does not always improve the performance

of PSE, which is seen in the earlier departure of the plot

from that of the SGM.

Energy Spectra

Next, the kinetic energy spectra are examined in order
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to validate the energy balance at one instant. The kinetic

energy spectra at t/T = 2 are shown in Figure. 2.

For all four conditions, the PSE matches the SGM for

low wave numbers but departs at higher wave numbers. The

Kolmogorov wave numbers are kη ≈ 20 and 30 for Reλ = 25

and 50, respectively. The spectrum of the PSE diverges from

the SGM at a wave number higher than kη for all calculation

conditions except for {Reλ, N} = {50, 643}. Furthermore,

increasing the spatial resolution shifts the point of departure

of the PSE to a higher wave number, irrespective of the

Reynolds number.

On the other hand, the CSM slightly overpredicts the

energy in the lower k, and agrees better with the SGM at

higher k. This is most clearly observed in Figure. 2 (b),

where the CSM spectrum is obviously larger than the other

two for intermediate wave numbers.

We suspect the problem does not lie in the treatment of

the diffusion term only but in the combined effect with the

stretching term, because the calculation of two-dimensional

isotropic turbulence by Totsuka & Obi (2007) have already

shown that the decay rate of the kinetic energy can be re-

produced when the diffusion terms are properly handled. In

the next section we will evaluate the spectral energy trans-

fer and shed light on the stretching term from a different

perspective.

Spectral Energy Transfer

A dynamical equation for the energy spectrum E(k) is

expressed by

∂E(k)

∂t
= T (k)− 2νk2E(k) (1)

The first term on the right hand side is the transfer term,

which expresses the amount of energy being transferred be-

tween the wave numbers. The second term is the dissipation,

which accounts for the energy being dissipated at that par-

ticular wave number. The balance of these two determine

the rate of change in kinetic energy contained in each wave

number.

The terms of the energy spectrum equation for Reλ = 25,

N = 643 at t/T = 2 are plotted in Figure. 3. Although

there are certain differences, the qualitative behavior is quite

similar for the three cases. The transfer term T is negative at

lower k and positive at higher k, indicating that the energy

is being transferred to smaller scales. The dissipation has

a negative peak at intermediate range of k rather than at

smaller scales, presumably because the viscous decay does

not yet take place at this time, cf.− Figure. 1.

The comparison among the different schemes reveals that

the transfer term in Figure. 3 (c) shows a larger discrepancy

than the other two methods. The over-proportional energy

transfer at the higher k rapidly increases after a few time

steps, and results in the blow up of CSM computation as

shown in Figure. 2(a).

The erroneous behavior of the straightforward implemen-

tation of the PSE and CSM is somewhat expected. The

PSE calculation uses the neighboring particles as quadrature

points, and requires a homogeneous particle distribution for

an accurate calculation. On the other hand, a straight-

forward implementation of the CSM lacks convergence due

to the fact that the ever-expanding Gaussian distribution

moves with the velocity at its center (Greengard, 1985). In

the following two sections, rigorous measures are taken to

improve the accuracy of both methods.
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Figure 3: Energy Spectrum Equation Budget at t/T=2.
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Spatial Adaption in PSE

To begin with, the particle density distribution through-

out the flow field is examined by sequentially subdividing

the domain into smaller boxes and monitoring the number

of particles in these boxes. We will consider the case for

Reλ = 25 and N = 643, for which the domain is divided

into 163 boxes. One box contains an average of 64 particles.

We also consider particles in the 26 neighboring boxes so

the total is 27×64 = 1728. This value differs between dense

regions and sparse regions.

Figure. 4 shows the standard deviation and flatness fac-

tor of the particle density distribution. The standard devi-

ation is 0 for the initially uniform distribution, and grows

rapidly at the earlier stages of the calculation. Though, the

increment becomes moderate at later stages and the final

value is still less than 1% of the mean value that is con-

stantly 1728. The flatness factor jumps at the first few time

steps but remains close to 3 otherwise.

We will use a remeshing technique to maintain the uni-

formity of particles (Koumoutsakos & Cottet, 2000). The
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Figure 5: Kinetic Energy Decay for PSE.

M ′
4 function is used as the interpolation formula.

M ′
4(x) =

8
>>>><
>>>>:

0 if |x| > 2

1

2
(2− |x|)2(1− |x|) if 1 ≤ |x| ≤ 2

1− 5x2

2
+

3|x|3
2

if |x| ≤ 1

(2)

The remeshing is performed every 10 time steps, which cor-

responds to t/T = 0.2. The decay of kinetic energy for

the PSE with and without remeshing are plotted in Fig-

ure. 5. The result with remeshing is closer to the SGM at

the end. The slope at the end is different from the case

without remeshing. However, the decay rate of the kinetic

energy is still insufficient. Judging from the fact that the

standard deviation of the particle density is less than 1% of

the mean value, the homogenous isotropic turbulence is not

a practical case for which the remeshing improves the results

of the PSE.

Spatial Adaption in CSM

The CSM is known to converge if spatial refinement is

performed either by splitting elements (Huang, 2005) or

recalculating the vortex strengths for smaller sized blobs

(Barba, 2005). In our case, we could not use element

splitting methods since the calculation cost would become

overwhelming for an already spatially well resolved three-

dimensional simulation.

In the present study, spatial adaption is performed by us-

ing the radial basis function interpolation (Barba, 2005) for

smaller sized blobs to reproduce the vorticity field without

increasing the number of elements. The BICGSTAB method

without preconditioning is used for the iteration, and calcu-

lated until the L2 norm error was less than 10−3. The FMM

box structure was also used to calculate efficiently inside the

BICGSTAB iteration.

The growth of the core radius is shown for the cases with

and without spatial adaption in Figure. 6. The initial core

radius is 2π/64 ≈ 0.1 and triples by the time t/T = 10 with-

out spatial adaption. However, with the spatial adaption,

the core radius increases merely 1%.

The kinetic energy decay is shown in Figure. 7 for the

same calculations. The CSM with spatial adaption (noted as

rbf) matches the result of the SGM. These results are quite

encouraging, and it is fair to say that the core spreading

method with spatial adaption is a viscous diffusion scheme
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Figure 6: Growth of the Core Radius.

that calculates the kinetic energy decay properly. The reason

for the discrepancy between the PSE with remeshing and

CSM with spatial adaption requires further investigation.

At this point we have not found a way to significantly

accelerate this procedure any further, and one spatial adap-

tion step takes the same amount of time as 5 vortex method

time steps. Hence, if we perform the spatial adaption every

5 time steps, it will double the total calculation time.

CONCLUSIONS

The vortex method is applied to the calculation of a

decaying homogeneous isotropic turbulence in order to quan-

tify the error involved in the cascade and dissipation of

kinetic energy. The core spreading method and particle

strength exchange were selected as the viscous diffusion

scheme to be examined. The effect of spatial resolution was

examined along with Reynolds number dependence and the

effect of spatial adaption of elements. The following conclu-

sions are drawn from the results of our calculations.

For the particle strength exchange, the kinetic energy

spectrum agrees well with the spectral method up to the
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Figure 7: Kinetic Energy Decay for CSM.

Kolmogorov wave number. However, the number of elements

required is larger than that of the spectral method. Also, the

use of remeshing has minimal effect in an isotropic turbu-

lence, where the vortex elements remain evenly distributed.

The core spreading method without spatial adaption is

valid only for the primary stage of decay. However, the

use of the radial basis function interpolation allows the core

spreading method to calculate the kinetic energy decay at

an accuracy close to the spectral methods until the kinetic

energy decreases an order of magnitude.
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