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ABSTRACT

The assessment of the vortex method for its application
to turbulent flow simulation is performed through computa-
tion of homogeneous isotropic turbulence. In particular, the
energy transfer across various scales of turbulence and the
representation of the viscous dissipation are examined. The
core spreading method and particle strength exchange were
selected as the viscous diffusion scheme to be tested. The
computations were accelerated by the use of a fast multipole
method modified for periodic boundary conditions. Results
show that both diffusion schemes are able to reproduce es-
sential dynamics of turbulence including the decay of kinetic
energy, though the spatial adaption is necessary even if the
number of vortex elements is sufficiently large.

INTRODUCTION

The simulation of turbulence requires the accurate pre-
diction of the production, transport, and dissipation of ki-
netic energy. In vortex methods, this is made possible by
properly calculating the stretching term and diffusion term
of the vorticity equation. The mesh-free nature of the pure
Lagrangian vortex methods is itself a large advantage, but it
is also the primary source of the viscous diffusion problem.

A straightforward application of the commonly used dif-
fusion schemes in vortex methods to turbulent flows cause
problems due to its Lagrangian nature. For example, hetero-
geneous distribution of vortex elements, which is inevitable
in the course of calculation, is known to contaminate the
accuracy of the diffusion. Furthermore, remeshing, adding,
splitting, or merging the vortex elements to solve this prob-
lem either undermines the mesh-free nature or adds some
ambiguity to the originally rigorous method. The modifica-
tion of the existing treatments is necessary while retaining
the advantage of the vortex method.

The following two methods are of primary interest in
our study: The particle strength exchange (PSE) (Winckel-
mans, 2004) and the core spreading method (CSM) (Barba
et al., 2005). The former permits the use of higher order
kernels, does not require viscous splitting, and is a straight-
forward solution to the governing integral equation. It has
also been successfully implemented in many applications.
On the other hand, the latter has the potential of becoming

a pure Lagrangian scheme. Unlike other viscous diffusion
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methods, the CSM does not require the use of any kind of
mesh.

Both methods have been tested for a number of com-
plex bluff body flows (Winckelmans, 2004), though only a
few conduct a thorough investigation in canonical turbulent
The Lamb-Oseen vortex often serves as a standard
benchmark for the viscous diffusion schemes, but this flow
is too simple to represent the complex dynamics of vortices
that occur in actual turbulent flows. A systematic assess-
ment of these methods is desired.

flows.

The present study focuses on the performance of the
vortex methods in simulating homogeneous isotropic tur-
bulence. This problem is particularly suitable to test the
ability of the method to reproduce fundamental features of
turbulence due to the absence of mean shear, strain, rota-
tion, or wall effects.
cascade process from large to small scales, which is the key
mechanism in the dynamics of turbulence. The suitability
of the viscous diffusion schemes can also be examined by
investigating the rate of energy dissipation.

It still involves, however, the energy

There are only few preceding studies on the computation
of homogeneous isotropic turbulence by the vortex meth-
ods. Cottet et al. (2002) used the vortex-in-cell method
and compared with a spectral method for N = 1282 grid
points. The evolution of the energy spectrum, kinetic en-
ergy, dissipation, enstrophy and skewness were in excellent
agreement. However, their method requires the use of a grid
for the stretching, diffusion and velocity calculations.

Totsuka & Obi (2007) studied the performance of the
core spreading method and a Laplacian model used in
moving particle semi-implicit methods by computing two-
dimensional homogeneous isotropic turbulence. The rate of
energy decay could be reasonably well reproduced when spe-
cial treatment was introduced. However, the effect of the
stretching term which is another key of the vortex method
calculation was left unexplored.

As a whole, the information on the ability of the vor-
tex methods in the fundamental turbulent flow problems is
limited. A possible reason is the comparative inefficiency
of the vortex methods for the calculation of homogeneous
turbulence. The calculation cost becomes high compared
to spectral methods because vortex methods do not bene-
fit from periodic boundary conditions, whereas the spectral
methods enormously do.
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Figure 1: Decay of Turbulent Kinetic Energy.

In the present study, an acceleration technique for the
Biot-Savart calculation in a periodic domain is developed
and validated. With the help of this acceleration technique,
cost effective calculation of the vortex method in three-
dimensional homogeneous turbulence has become possible.

The computations are made using a pure Lagrangian
vortex method and compared with a spectral method cal-
culation. The number of elements used for both methods
are set equal to each other in order to provide more or less
the same spatial resolution and also to facilitate the assess-
ment on the cost efficiency.

NUMERICAL METHOD

Periodic Fast Multipole Method

In the present study the fast multipole method (FMM)
by Cheng et al. (1999) is modified to include the effect of
periodic boundary conditions. Previous attempts to use the
FMM in a periodic domain have a 3¥ x 3% x 3¥ structure
(Lambert et al., 1996), where k is the number of periodic
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image cells per dimension. The present method forms a
2k x 2k x 2k structure, by grouping the cells in a different
manner.

Spectral Method

The spectral Galerkin method with primitive variable
formulation (Rogallo, 1981) is used in the present study.
A pseudo-spectral method was used to compute the con-
volution sums, and the aliasing error was removed by the
3/2-rule. The time integration was performed using the
fourth-order Runge-Kutta method for all terms.

Initial Condition

The initial condition was generated in Fourier space as
a solenoidal isotropic velocity field with random phases and
a prescribed energy spectrum, and transformed to physical
space (Rogallo, 1981). The spectral method calculation used
this initial condition directly. The strength of the vortex el-
ements was calculated from the vorticity field on the grid by
solving a system of equations (Barba, 2005). The core ra-
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Figure 2: Kinetic Energy Spectra at t/T = 2.

dius of the vortex elements were set to 2 /N and the overlap
ratio was 1.

Computational Details

Calculations were performed for Rey = 25 and 50. The
Reynolds number was changed by adjusting the strength of
the prescribed energy spectrum, and the viscosity remains
constant. The number of elements was N = 642 and 1283.
The time increment was At = 0.005 and 0.0025 for the cal-
culations of Rey = 25 and 50, respectively. This corresponds
to a quarter of the Kolmogorov time scale.

RESULTS AND DISCUSSION

Energy Decay

First, the decay of kinetic energy is examined in order to
quantify the global feature of the vortex methods. N and
Re) are changed independently to observe the relation be-
tween the spatial resolution and Reynolds number. The four
different cases are shown in Figure. 1. SGM, PSE, and CSM
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stand for the spectral Galerkin method, particle strength
exchange and core spreading method. The time t is normal-
ized by T, with T" being the eddy turnover time defined as
T = L/u/, where L is the integral scale and v’ is the velocity
fluctuation.

The results of SGM indicate that the rate of decay in
total kinetic energy is relatively small at the beginning and
increases afterwards. The change of the decay rate occurs
slightly later for the larger Rey.

The PSE fails to capture the decay of the kinetic energy
at later time steps. On the other hand, the CSM calculation
diverges at t/T > 3 for all four conditions.
stood that the condition shown in (c) represents the most
low spatial resolution against Rey. On the other hand, the
comparison between (a) and (b) shows that the increase of
spatial resolution does not always improve the performance
of PSE, which is seen in the earlier departure of the plot
from that of the SGM.

It is under-

Energy Spectra
Next, the kinetic energy spectra are examined in order



to validate the energy balance at one instant. The kinetic
energy spectra at ¢/7T = 2 are shown in Figure. 2.

For all four conditions, the PSE matches the SGM for
low wave numbers but departs at higher wave numbers. The
Kolmogorov wave numbers are k;,, ~ 20 and 30 for Rey = 25
and 50, respectively. The spectrum of the PSE diverges from
the SGM at a wave number higher than k, for all calculation
conditions except for {Rey, N} = {50,643}. Furthermore,
increasing the spatial resolution shifts the point of departure
of the PSE to a higher wave number, irrespective of the
Reynolds number.

On the other hand, the CSM slightly overpredicts the
energy in the lower k, and agrees better with the SGM at
higher k. This is most clearly observed in Figure. 2 (b),
where the CSM spectrum is obviously larger than the other
two for intermediate wave numbers.

‘We suspect the problem does not lie in the treatment of
the diffusion term only but in the combined effect with the
stretching term, because the calculation of two-dimensional
isotropic turbulence by Totsuka & Obi (2007) have already
shown that the decay rate of the kinetic energy can be re-
produced when the diffusion terms are properly handled. In
the next section we will evaluate the spectral energy trans-
fer and shed light on the stretching term from a different
perspective.

Spectral Energy Transfer
A dynamical equation for the energy spectrum E(k) is
expressed by

OE(k)
ot

=T(k) — 2vk*E(k) (1)

The first term on the right hand side is the transfer term,
which expresses the amount of energy being transferred be-
tween the wave numbers. The second term is the dissipation,
which accounts for the energy being dissipated at that par-
ticular wave number. The balance of these two determine
the rate of change in kinetic energy contained in each wave
number.

The terms of the energy spectrum equation for Rey) = 25,
N = 643 at t/T = 2 are plotted in Figure. 3. Although
there are certain differences, the qualitative behavior is quite
similar for the three cases. The transfer term T is negative at
lower k£ and positive at higher k, indicating that the energy
is being transferred to smaller scales. The dissipation has
a negative peak at intermediate range of k rather than at
smaller scales, presumably because the viscous decay does
not yet take place at this time, cf.— Figure. 1.

The comparison among the different schemes reveals that
the transfer term in Figure. 3 (c) shows a larger discrepancy
than the other two methods. The over-proportional energy
transfer at the higher k£ rapidly increases after a few time
steps, and results in the blow up of CSM computation as
shown in Figure. 2(a).

The erroneous behavior of the straightforward implemen-
tation of the PSE and CSM is somewhat expected. The
PSE calculation uses the neighboring particles as quadrature
points, and requires a homogeneous particle distribution for
an accurate calculation. On the other hand, a straight-
forward implementation of the CSM lacks convergence due
to the fact that the ever-expanding Gaussian distribution
moves with the velocity at its center (Greengard, 1985). In
the following two sections, rigorous measures are taken to
improve the accuracy of both methods.

(a) SGM

(b) PSE

(c) CSM

Figure 3: Energy Spectrum Equation Budget at t/T=2.
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Figure 4: Statistics of the Particle Distribution.

Spatial Adaption in PSE

To begin with, the particle density distribution through-
out the flow field is examined by sequentially subdividing
the domain into smaller boxes and monitoring the number
of particles in these boxes. We will consider the case for
Rey = 25 and N = 643, for which the domain is divided
into 163 boxes. One box contains an average of 64 particles.
We also consider particles in the 26 neighboring boxes so
the total is 27 x 64 = 1728. This value differs between dense
regions and sparse regions.

Figure. 4 shows the standard deviation and flatness fac-
tor of the particle density distribution. The standard devi-
ation is 0 for the initially uniform distribution, and grows
rapidly at the earlier stages of the calculation. Though, the
increment becomes moderate at later stages and the final
value is still less than 1% of the mean value that is con-
stantly 1728. The flatness factor jumps at the first few time
steps but remains close to 3 otherwise.

We will use a remeshing technique to maintain the uni-
formity of particles (Koumoutsakos & Cottet, 2000). The
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Figure 5: Kinetic Energy Decay for PSE.

M) function is used as the interpolation formula.
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The remeshing is performed every 10 time steps, which cor-
responds to t/T = 0.2. The decay of kinetic energy for
the PSE with and without remeshing are plotted in Fig-
ure. 5. The result with remeshing is closer to the SGM at
the end. The slope at the end is different from the case
without remeshing. However, the decay rate of the kinetic
energy is still insufficient. Judging from the fact that the
standard deviation of the particle density is less than 1% of
the mean value, the homogenous isotropic turbulence is not
a practical case for which the remeshing improves the results
of the PSE.

Spatial Adaption in CSM

The CSM is known to converge if spatial refinement is
performed either by splitting elements (Huang, 2005) or
recalculating the vortex strengths for smaller sized blobs
(Barba, 2005). In our case, we could not use element
splitting methods since the calculation cost would become
overwhelming for an already spatially well resolved three-
dimensional simulation.

In the present study, spatial adaption is performed by us-
ing the radial basis function interpolation (Barba, 2005) for
smaller sized blobs to reproduce the vorticity field without
increasing the number of elements. The BICGSTAB method
without preconditioning is used for the iteration, and calcu-
lated until the L2 norm error was less than 10~3. The FMM
box structure was also used to calculate efficiently inside the
BICGSTARB iteration.

The growth of the core radius is shown for the cases with
and without spatial adaption in Figure. 6. The initial core
radius is 27/64 & 0.1 and triples by the time ¢/7T = 10 with-
out spatial adaption. However, with the spatial adaption,
the core radius increases merely 1%.

The kinetic energy decay is shown in Figure. 7 for the
same calculations. The CSM with spatial adaption (noted as
rbf) matches the result of the SGM. These results are quite
encouraging, and it is fair to say that the core spreading
method with spatial adaption is a viscous diffusion scheme
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Figure 6: Growth of the Core Radius.

that calculates the kinetic energy decay properly. The reason
for the discrepancy between the PSE with remeshing and
CSM with spatial adaption requires further investigation.

At this point we have not found a way to significantly
accelerate this procedure any further, and one spatial adap-
tion step takes the same amount of time as 5 vortex method
time steps. Hence, if we perform the spatial adaption every
5 time steps, it will double the total calculation time.

CONCLUSIONS

The vortex method is applied to the calculation of a
decaying homogeneous isotropic turbulence in order to quan-
tify the error involved in the cascade and dissipation of
kinetic energy. The core spreading method and particle
strength exchange were selected as the viscous diffusion
scheme to be examined. The effect of spatial resolution was
examined along with Reynolds number dependence and the
effect of spatial adaption of elements. The following conclu-
sions are drawn from the results of our calculations.

For the particle strength exchange, the kinetic energy
spectrum agrees well with the spectral method up to the
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Figure 7: Kinetic Energy Decay for CSM.

Kolmogorov wave number. However, the number of elements
required is larger than that of the spectral method. Also, the
use of remeshing has minimal effect in an isotropic turbu-
lence, where the vortex elements remain evenly distributed.

The core spreading method without spatial adaption is
valid only for the primary stage of decay. However, the
use of the radial basis function interpolation allows the core
spreading method to calculate the kinetic energy decay at
an accuracy close to the spectral methods until the kinetic
energy decreases an order of magnitude.
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