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ABSTRACT

In the present paper we investigate two-phase flows by

numerical simulations with the hybrid particle-level-set

method (HPLS). The HPLS-scheme is an extension of the

original level-set technique with the purpose of improving

mass conservation for moving interfaces. We have applied

the HPLS-method to the simulation of gas bubbles rising

in liquids. These two-phase flows exhibit large density

and viscosity ratios, and a significant surface-tension force

acts at the interface. Flow configurations with steadily

rising bubbles with a closed wake and bubbles with open

wakes ascending on spiraling paths have been investigated.

The former were used mainly for validation purposes by

confirming that the geometry of the closed wake is in good

agreement with experiments. For the latter configuration

the open unsteady wake leads to a helical or a zig-zag

ascent path. It is confirmed that a periodic shedding of

large vortical structures accompanies the lateral movement

of the bubble.

INTRODUCTION

For many technical applications the numerical simula-

tion of incompressible two-phase flows with large density

differences is important. Examples can be found in metal-

lurgy, where the injection of gas bubbles in a melt is used

for stirring and alloying processes. Often flow parameters

are such that complex interface deformations have to be

expected.

In our numerical simulations of two-phase flows we use the

hybrid particle-level-set method proposed by Enright et

al. (2002) for modeling the phase boundary. The method

combines the level-set scheme with an interface tracking

by marker particles. Since their introduction by Osher

and Sethian (1988) level-set schemes have been subject to

further development and improvement (Osher and Fedkiw

2001, Sethian and Smereka 2003) and are nowadays an

important alternative to volume-of-fluid or particle-tracking

approaches. With level-set methods formally no reconstruc-

tion of the interface is necessary and the computation of

quantities at the interface, e.g., the local curvature and the

unit normal vector is straightforward due to the continuous

definition of the level-set function. However, in regions

of large curvature the interface might become marginally

resolved by the underlying computational mesh, leading

to mass losses in these areas. The hybrid particle-level-set

method uses marker particles to correct mass errors in

the level-set representation of the interface. Lagrangian

marker-particle schemes preserve mass of the phases

exactly but the continuous reconstruction of interfaces is

difficult, in particular for cases with interfaces merging or

breaking up. With the HPLS-method two sets of massless

marker particles are seeded in the vicinity of the interface

and this particle distribution is used to track the phase

boundary throughout the simulation. Whenever there is a

disagreement between the interface representation given by

the level-set function and the marker-particle positions the

level-set function is corrected.

The improvement by the HPLS-scheme with respect

to efficiency and accuracy compared to a pure level-set

approaches has been shown by Enright et al. (2002) and

by Gaudlitz and Adams (2004) for generic numerical test

cases. In this paper we apply the method to two-phase

flows characterized by large density ratios and involving

surface-tension forces. After giving the basic mathemat-

ical equations of the method we review their numerical

discretization. We will discuss results of direct numerical

simulations of gas bubbles rising in liquids showing linear

or zig-zag ascent paths.

MATHEMATICAL FORMULATION

The governing equations for the fluid velocity u and pres-

sure p for incompressible two-phase flows are given by

ut + u · ∇u = −∇p

ρ
+

1

Reref · ρ
∇ · (2µD) +

+
g

u

Fr2
ref

− 1

Weref · ρ
κδN , (1)

∇ · u = 0 . (2)

Herein ρ and µ are the local density and viscosity, respec-

tively, D is the rate-of-deformation tensor, whose compo-

nents are Dij = 1
2

(ui,j + uj,i) and g
u

is the unit gravity

vector. κ denotes the curvature of the phase interface, δ is a

delta function being zero everywhere except near the inter-

face, and N is the unit normal vector at the interface.

The above equations are non-dimensionalized leading to the

following parameters:

Reref =
ρcLU

µc
reference-Reynolds number,

Frref =
U√
gL

reference-Froude number,

Weref =
ρcLU2

σ
reference-Weber number,

where ρc is the density and µc is the dynamic viscosity of

the continuous phase. L is a reference length, U a reference

velocity and σ is the surface-tension coefficient.

The two phases are distinguished by the level-set func-

tion. The interface between the two immiscible phases is

given by the zero level-set of a scalar function φ(x, t). Away
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from the interface the level-set function φ gives the signed

distance to the interface, being negative in the gas phase and

positive in the liquid phase.

Density and viscosity are computed by Eqs. (3) and (4),

where the subscripts ’c’ and ’d’ correspond to the two dif-

ferent phases,

ρ(φ) = ρd + (ρc − ρd) ·H(φ), (3)

µ(φ) = µd + (µc − µd) ·H(φ). (4)

H(φ) is a Heaviside function mollified within a small region

ε on each side of the interface

H(φ) =

8
><
>:

0 , if φ < −ε
1
2
(1 + φ

ε
+ 1

π
sin(πφ

ε
)) , if −ε ≤ φ ≤ ε

1 , if φ > ε.

(5)

The level-set function is advected by the local flow velocity

φt + u · ∇φ = 0. (6)

While Eq. (6) transports the zero level-set, i.e. the interface,

the signed-distance property is lost in general. However,

for the computation of the surface-tension term involving

curvature and the normal vector as well as for the smoothing

of variables near the interface it is essential to maintain φ

as a distance function. To reestablish the signed-distance

property a reinitialization procedure by solving Eq. (7) to

steady state has to be carried out after each time step

φτ + sign (φ) · (|∇φ| − 1) = 0. (7)

Besides the level-set function describing the phase bound-

ary, the HPLS-method places two sets of massless marker

particles near the interface. Positive particles are assigned

to φ > 0 and negative particles to φ < 0. The particle

evolution in time is given by

dxP

dt
= u(xP ). (8)

NUMERICAL METHOD

For the discretization of the above equations we use finite

differences on an equidistant staggered grid. Incompress-

ibility is enforced by a fractional step projection method.

First, the right-hand side composed by convection, dissipa-

tion, buoyancy and surface-tension terms is computed and

evolved forward in time, Eq. (9), giving an intermediate ve-

locity u∗. The Poisson equation for the pressure, Eq. (10), is

solved and the intermediate velocity u∗ is made divergence

free resulting in the velocity field un+1 at the next time step,

Eq. (11).

u∗ − un

δt
= −(un · ∇)un +

1

ρ

„
1

Reref
∇ · (2µD)+

+
g

u

Fr2
ref

− 1

Weref
κ(φ) · δ (φ) N(φ)

!
(9)

∇ ·
„

1

ρ
∇p

«
= ∇ · u∗ (10)

un+1 = u∗ − 1

ρ
∇p (11)

The convective terms in the Navier-Stokes equations are dis-

cretized by fourth-order finite differences (Morinishi, 1998)

which simultaneously conserve mass, momentum and kinetic

energy on uniform staggered grids. Viscous terms are dis-

cretized by second-order finite differences. When computing

flows with fluid interfaces the surface-tension force acting at

phase boundaries has to be taken into account. This addi-

tional source term is given by the last term on the right-hand

side of Eq. (9) and includes the unit normal vector at the

interface

N(φ) =
∇φ

|∇φ| , (12)

and the curvature of the interface

κ(φ) = ∇ ·
„ ∇φ

|∇φ|

«
. (13)

Spatial derivatives in Eqs. (12) and (13) are computed

by second-order central differences. With the continuum-

surface-force approach (Brackbill, 1992) a mollified delta

function

δ(φ) =

(
1
2ε

“
1 + cos

“
πφ
ε

””
, if |φ| < ε

0 , otherwise,
(14)

is used to smooth the singular surface-tension force at

the phase boundary. A detailed analysis of different

implementations of the surface-tension term can be found

in Gaudlitz and Adams (2006).

The Poisson equation, Eq.(10), is discretized by second-

order finite differences and the resulting system of

quasi-linear equations is solved by a preconditioned

conjugate-gradient method. For evolution in time of the

Navier-Stokes equations, Eq. (1), the level-set function,

Eq. (6), and the particle positions, Eq. (8), a third-order

Runge-Kutta scheme is employed.

The procedure for evolving interfaces in time with the

HPLS-method is as follows: First, the level-set function, Eq.

(6), and the particle positions, Eq. (8), are evolved forward

in time. Spatial derivatives in Eq. (6) are computed by a

high-order WENO-scheme and in Eq. (8) the particle velo-

cities u(xP ) are interpolated linearly.

Second, the level-set function needs to be reinitialized by

solving Eq. (7), where again a high-order WENO-scheme

for the spatial derivatives and a Runge-Kutta scheme for

integration in time is used. The sign function in Eq. (7) is

defined as

sign(φ) =
φp

φ2 + h2
, (15)

where smoothing over a single cell width h is incorporated.

For sufficiently small time steps φ does not differ too much

from a distance function and therefore Eq. (7) needs to be

evolved for a few steps in pseudo-time τ only.

Finally, a correction of the level-set function by the

marker particles is carried out in order to improve mass

conservation properties of the scheme. Although formally

Eq. (7) does not alter the location of the zero level-set

this is not the case for the discrete approximation. In

Gaudlitz and Adams (2006) the reinitialization step has

been identified to cause a major contribution to the mass

loss during simulations. Instead of performing a particle

correction after level-set transport and after reinitialization

(Enright et al. 2002) we perform the particle correction

only once per time step after the reinitialization.

In the following we give an overview of the particle cor-

rection algorithm. Positive and negative particles are seeded

at the corresponding sides of the interface described by

φ = 0. At each time step a radius rP which is bounded
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by a lower and upper limit depending on the resolution of

the computational grid is assigned to each particle. With

rmin = 0.1 · h and rmax = 0.5 · h the radii of the particles

are set as

rP =

8
<
:

rmax , if signP φ(xP ) > rmax

signP φ(xP ) , if rmin ≤ signP φ(xP ) ≤ rmax

rmin , if signP φ(xP ) < rmin,

(16)

where signP indicates wether the particle belongs to phase

φ > 0 ⇒ signP = +1 or to phase φ < 0 ⇒ signP =

−1. After performing the reinitialization step all particles

are detected, which have crossed the interface φ = 0 by a

distance of more than their radius. These ’escaped’ particles

are associated with a spherical level-set function

φP (x) = signP (rP − |x− xP |) , (17)

where the particle radius rP describes the zero level-set

φP (x) = 0 of this function. Equation (17) is evaluated at

the eight corners of the cell containing the particle. If φP

differs from the level-set function φ at these locations the

interface φ = 0 requires correction.

The set of escaped positive particles E+ is used to recon-

struct the φ > 0 region and the escaped negative particles

E− are used to reconstruct the φ < 0 region. The corrected

local level-set value is obtained by choosing either φ+ or φ−

whichever is smallest in magnitude

φ =


φ+ , if |φ+| ≤ |φ−|
φ− , if |φ+| > |φ−|, (18)

where

φ+ = max
p∈E+

(φP , φ) , and

φ− = min
p∈E−

(φP , φ) .

RESULTS OF SIMULATIONS

Bubbles with closed wake

A detailed experimental investigation of air bubbles ris-

ing in a water-glucose solution has been done by Bhaga and

Weber (1981). By using different glucose concentrations the

dynamic viscosity of the liquid was varied while the liquid

density and the surface-tension coefficient remained nearly

unaffected. The Morton number Mo = (g · µ4
c)/(ρc · σ3)

ranges from 850 to 7, 4 · 10−4. Air bubbles of equal vol-

ume were found to develop very different shapes depending

on the Morton number. At high Morton numbers the flow is

strongly influenced by viscous forces and the bubbles remain

almost spherical or become slightly ellipsoidal. For smaller

Morton numbers the bubble shape changes to a flat axisym-

metric cap.

We have performed numerical simulations of single bubbles

at two different Morton numbers. In table 1 the parameters

of the simulations are summarized, where dB is the initial

bubble diameter, X, Y, Z are the spatial extends of the carte-

sian domain, and Nx, Ny , Nz are the number of cells in the

three coordinate directions. In order to properly resolve the

high curvature at the outer region of the cap-type bubble

a finer grid had to be used for Case 2. The liquid and the

gas phase were initially at rest and a spherical bubble was

initialized at the center of the computational domain.

After an initial transient the bubble shape and its wake

(a) Experiment (b) Numerical simulation

Figure 1: Bubble shapes for Case 1.

(a) Experiment (b) Numerical simulation

Figure 2: Bubble shapes for Case 2.

Table 1: Parameters of the simulation.

Case 1 Case 2

Mo 41.1 0.103

Reref 13.91 62.03

Weref 116 116

Frref 1.0 1.0

ρd/ρc 1/1070 1/1048

µd/µc 1/71978 1/15824

X × Y × Z 4 dB × 8 dB × 4 dB

Nx ×Ny ×Nz 160×320×160 240×480×240

Table 2: Terminal rising velocities and bubble-Reynolds

number.

Case 1 Case 2

UT ReB UT ReB

(m/s) (m/s)

Experiment 0.26 7.2 0.34 42.2

Simulation 0.25 6.9 0.33 40.2

Angelino (1966) 0.25 - 0.33 -

reach a stationary state. The measured terminal rising ve-

locities UT and the bubble-Reynolds number ReB = UT ·
dB ·ρc/µc are summarized in table 2. An empirical estimate

for the terminal rising velocity has been given by Angelino

(1966). This prediction is based only on the Morton number

characterizing the gas-liquid system and the bubble volume

V and gives remarkably good results when compared with

our simulation data. The units of V and UT in Eq. (19) are

cm3 and cm/s, respectively.

UT = KV m (19)

K =
25

1 + 0.33Mo0.29

m =
0.167

1 + 0.34Mo0.24

Figures 1 and 2 show a comparison of the stationary bub-

ble shapes between experiments and simulation. In Case

1 the bubble developes an oblate ellipsoidal shape with an
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indentation at its lower side. For Case 2 this indentation

develops further towards a cap-type shape as the final sta-

tionary state. A comparison of characteristic parameters of

the bubble geometries in Fig. 3 reveals a good agreement of

the experimental and numerical results. In Fig. 3(d) bubble

drag coefficients of experiments and simulations are shown,

where in the simulations cD has been computed from

cD =
4 · g · dB

3 · U2
T

(20)

In the literature various empirical correlations for determin-

ing the drag coefficient can be found. However, their validity

is restricted to specific bubble shapes or limited ranges of

Reynolds numbers mostly. The drag law given by Mei et

al. (1994) takes into account the existence of a bubble wake

as well as that of a shear layer at the bubble surface, but

it is valid only for almost spherical bubbles. Hence the val-

ues predicted by this correlation differ from the experimental

and our numerical results for ReB > 5, where ellipsoidal and

cap-type bubbles develop at the considered Morton num-

bers. Similarly, the correlation cD = 14.9/Re0.78 proposed

by Clift et al. (1978) gives reasonable values for the drag

coefficient for nearly spherical bubbles only. A very good

agreement of the experimental and numerical results is ob-

tained with the empirical relation cD = (16/Re)+2 of Taylor

and Acrivos (1964), see Fig. 3(d).

Due to the high viscosity of the liquid the Reynolds numbers

are relatively small leading to closed laminar wakes. Width

and length of the wakes are shown in Figs. 4(a) and 4(b), re-

spectively, where a good agreement between experiment and

simulation is obtained. The same is found for the parameter

hS , Fig. 3(a), describing the wake structure, see Fig. 4(c).

Bubbles with open wake

In numerous experiments of air bubbles rising in

water linear ascent paths have been observed for bubble

diameters less than 1.2 mm. For larger diameters the

bubble rises unsteadily on spiral or zig-zag paths. For the

investigation of an air bubble with dB = 4 mm rising in

water on a zig-zag path the following parameters have been

chosen: the reference-Reynolds number is Reref = 269,

the reference-Weber number is Weref = 2.15, and the

reference-Froude number is Frref = 1.0. The density ratio

for air bubbles rising in water is ρd/ρc = 1/774 and the

ratio of the dynamic viscosities is µd/µc = 1/54. Periodic

boundary conditions have been used for the computa-

tional domain with the extents X = 4 dB , Y = 8 dB and

Z = 4 dB . The number of grid cells along the coordinate

axes are Nx = 70, Ny = 140 and Nz = 70. As this grid

resolution was found not to resolve the smallest flow scales

the reference-Reynolds number was reduced in a second

attempt to Reref = 269. The simulation was initialized

with a spherical bubble at rest.

During the initial phase the bubble deforms to an

oblate ellipsoid with a mean ratio of the major horizontal

axis to the vertical axis of 2.15. We note, that with

onset of a zig-zag path also the bubble shape starts to

oscillate periodically. In Fig. 5(a) the zig-zag path of the

center-of-gravity of the bubble during rise is shown. For

this particular simulation the plane containing the zig-zag

motion is oriented approximately along the diagonal of the

X-Z plane. This orientation is a random consequence of

round-off errors since other orientations were observed for

other simulations. We measured an oscillation frequency of

6.8 Hz and an amplitude of ramp = 0.72 dB .

w
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(a) Definition of bubble and wake geometry.
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(c) Bubble height.
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(d) Bubble drag coefficient.

Figure 3: Geometry and drag coefficient of the bubble. Mor-

ton numbers in the experiments are: © : 711; ¤: 55.5; 4:

4.17; ¦:1.03; O: 0.108; /: 5.48 ·10−3; ⊗: 1.64 ·10−3. Numer-

ical simulations: ¥: Case 1 ; N: Case 2.
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(b) Length of bubble wake.
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(c) Position of the wake stagnation ring.

Figure 4: Geometry of the wake. Morton numbers in the

experiments are: © : 258; ¤: 43.5; 4: 4.41; ¦:0.962; O:

0.144; /: 4.58·10−3; ⊗ : 1.73·10−2; ⊕ : 6.5·10−2. Numerical

simulations: ¥: Case 1 ; N: Case 2.

Figure 5(b) shows the bubble shape and the trailing vortex

structures at an instant in time. We observe a quantitatively

similar behaviour as in the experiments of Brücker (1999)

of larger Reynolds number. Brücker identified a periodic

shedding of hairpin-like vortical structures to accompany

the zig-zag paths. Whenever the zig-zag motion reverses

a hairpin-like vortex forms at the trailing edge of the

bubble. In Fig. 5(b) the two vertically aligned legs of this

flow structure are identified by two iso-contours of the

streamwise vorticity ωy, colored grey and black, which have

the same magnitude but opposite signs.

The entire period of the zig-zag motion is spanned by

six snapshots in X-Z planes, Fig. 7. The cross section

of the bubble through its center-of-gravity is illustrated

together with iso-contours of the streamwise vorticity

ωy in a horizontal plane a distance of 0.5 dB below the

lower bubble surface. The arrow specifies the respective

X

Y

Z

(a) 3D rising path. (b) Bubble surface and iso-contours
of ωy at an instant in time.

Figure 5: Bubble rising on a zig-zag path.
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Figure 6: Motion of the center-of-gravity of the bubble.

direction of the lateral bubble motion and the arrow length

is proportional to the lateral bubble velocity. For a better

illustration of the phases of bubble motion shown in Fig.7

the respective position of the center-of-gravity of the bubble

is highlighted in Fig. 6. Herein rcenter is the distance

between the center-of-gravity of the bubble and the center

line of the zig-zag motion.

A counter-rotating vortex pair representing the two legs of

the hairpin-like vortex can be clearly identified in Fig. 7(a).

At this instant the bubble has just passed the 90◦ phase

angle of the path oscillation, see Fig. 6, and the lateral

velocity is now maximum. The hairpin-like vortex follows

the bubble in its wake. Shortly before reaching the next

reversing point at 180◦ phase angle a new pair of vortex

legs is found, but now with opposite direction of rotation,

see Fig 7(b). Figure 7(c) shows the bubble just after it

has passed the 180◦ phase angle of its lateral motion. The

new vortex legs have grown in strength, while the previous

hairpin-like vortex is shed from the bubble and moves away.

The bubble crosses 270◦ phase angle of the oscillation with

the trailing vortex legs reaching their highest intensity,

see Fig. 7(d). In Fig. 7(e) the bubble approaches the

360◦ phase angle, where the trailing hairpin-like vortex

is shed and a new vortex developes at the opposite side

of the bubble. At the bubble position shown in Fig. 7(f)

one period is completed. Note that due to the periodic

boundary conditions the trailing vortex system appears

now at the bottom of Fig. 7(f).

Although the Reynolds number in this simulation is

smaller than for the experiments of Brücker (1999) all

flow phenomena leading to a zig-zagging rising path are

captured. As found in experiments we also identified a

periodic shedding of vortices from the bubble to accompany

the observed zig-zag path.
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(e) (f)

Figure 7: 2d bubble contours and streamwise vorticity in

a horizontal plane in a distance of 0.5 dB below the lower

bubble surface at different instants in time. Grey and thin

black lines indicate negative and positive values of ωy, re-

spectively. The thick black line shows the instantaneous

bubble contour.

CONCLUSIONS

The hybrid particle-level-set method has been employed

to simulate gas bubbles rising in liquids. Such two-phase

flows are characterized by large density and viscosity ratios

and by the presence of surface-tension forces at the phase

boundaries. For bubbles rising steadily on a linear path the

bubble shape, the wake geometry and the terminal rising ve-

locity obtained by numerical simulations have been found to

be in excellent agreement with experimental data. For bub-

bles ascending on zig-zag paths we captured the mechanism

of periodic vortex shedding related to this lateral bubble mo-

tion. In attempts to compute such flows with a pure level-set

algorithm on grids refined by a factor of two the computa-

tional work increased significantly but the accuracy of the

HPLS-scheme could not be reached.
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